Matches in SemOpenAlex for { <https://semopenalex.org/work/W2102679425> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2102679425 endingPage "380" @default.
- W2102679425 startingPage "351" @default.
- W2102679425 abstract "Polymeric networks exhibiting high elasticity consist, typically, of linear chains several hundred bonds in length joined at their ends to ϕ -functional junctions ( ϕ > 2). For random unconstrained chains of this length, the density distribution of chain vectors r is Gaussian in satisfactory approximation. The chains interpenetrate copiously in the network; the domain described by the set of ϕ junctions that are topological neighbours of a given junction encompasses many (20–100) spatial neighbours. A phantom network is expressly defined as a hypothetical one whose chains may move freely through one another; the chains act exclusively by introducing a force that is proportional to the distance between each pair of junctions so connected. The following results of James & Guth are rederived for a Gaussian phantom network using a simplified version of their procedure: (1) the mean values r̄ of the individual chain vectors are linear functions of the tensor λ of the principal extension ratios specifying the macroscopic strain, (2) fluctuations ∆ r ═ r – r̄ about these mean values are Gaussian, and (3) the mean-square fluctuations depend only on the structure of the network and not on the strain. Additionally, we show (4) that the distribution of the average vectors r̄ is Gaussian, and (5) that ≺(∆ r ) 2 ≻ ═ (2/ ϕ ) < r 2 ≻ 0 , a result obtained previously by Graessley. It follows from (1) and (3) that the transformation of chain vectors r of the phantom network is not affine in λ , and hence that junctions exchange neighbours with strain. In real networks, the mutual interpenetration of chains pendent at a given junction must obstruct this process of local rearrangement of junctions; the transformation of chain vectors may therefore be more nearly affine in λ , especially when the network is undiluted. The elastic free energy derived for a phantom network of any functionality and degree of imperfection reduces to ∆ A e1 ═ ½ξ kT ( I 1 – 3), where I 1 ═ trace ( λ T λ ) is the first invariant of the strain and ξ is the cycle rank of the network. If the fluctuations of junctions in a real network are suppressed for the reasons stated, the elastic free energy is ∆ A* e1 = ξ(1 – 2 ϕ ) –1 ½ kT ( I 1 – 3) – (2ξ/ ϕ ) (1 – 2/ϕ) –1 kT In ( V / V 0 ), where V and V 0 are the actual and reference volumes, respectively. The expected trend from ∆ A* e1 to ∆ A e1 with dilution may account, qualitatively at least, for the effect of dilution on the stress–strain relation. A similar trend with extension may explain the familiar departure of the observed tension–elongation relation from theory." @default.
- W2102679425 created "2016-06-24" @default.
- W2102679425 date "1976-11-19" @default.
- W2102679425 modified "2023-10-05" @default.
- W2102679425 title "Statistical thermodynamics of random networks" @default.
- W2102679425 cites W1999479012 @default.
- W2102679425 cites W2058430348 @default.
- W2102679425 doi "https://doi.org/10.1098/rspa.1976.0146" @default.
- W2102679425 hasPublicationYear "1976" @default.
- W2102679425 type Work @default.
- W2102679425 sameAs 2102679425 @default.
- W2102679425 citedByCount "503" @default.
- W2102679425 countsByYear W21026794252012 @default.
- W2102679425 countsByYear W21026794252013 @default.
- W2102679425 countsByYear W21026794252014 @default.
- W2102679425 countsByYear W21026794252015 @default.
- W2102679425 countsByYear W21026794252016 @default.
- W2102679425 countsByYear W21026794252017 @default.
- W2102679425 countsByYear W21026794252018 @default.
- W2102679425 countsByYear W21026794252019 @default.
- W2102679425 countsByYear W21026794252020 @default.
- W2102679425 countsByYear W21026794252021 @default.
- W2102679425 countsByYear W21026794252022 @default.
- W2102679425 countsByYear W21026794252023 @default.
- W2102679425 crossrefType "journal-article" @default.
- W2102679425 hasConcept C104293457 @default.
- W2102679425 hasConcept C114614502 @default.
- W2102679425 hasConcept C120665830 @default.
- W2102679425 hasConcept C121040770 @default.
- W2102679425 hasConcept C121332964 @default.
- W2102679425 hasConcept C121864883 @default.
- W2102679425 hasConcept C134306372 @default.
- W2102679425 hasConcept C163716315 @default.
- W2102679425 hasConcept C166550679 @default.
- W2102679425 hasConcept C184720557 @default.
- W2102679425 hasConcept C199185054 @default.
- W2102679425 hasConcept C28225019 @default.
- W2102679425 hasConcept C33923547 @default.
- W2102679425 hasConcept C36503486 @default.
- W2102679425 hasConcept C60723933 @default.
- W2102679425 hasConcept C62520636 @default.
- W2102679425 hasConcept C84114770 @default.
- W2102679425 hasConceptScore W2102679425C104293457 @default.
- W2102679425 hasConceptScore W2102679425C114614502 @default.
- W2102679425 hasConceptScore W2102679425C120665830 @default.
- W2102679425 hasConceptScore W2102679425C121040770 @default.
- W2102679425 hasConceptScore W2102679425C121332964 @default.
- W2102679425 hasConceptScore W2102679425C121864883 @default.
- W2102679425 hasConceptScore W2102679425C134306372 @default.
- W2102679425 hasConceptScore W2102679425C163716315 @default.
- W2102679425 hasConceptScore W2102679425C166550679 @default.
- W2102679425 hasConceptScore W2102679425C184720557 @default.
- W2102679425 hasConceptScore W2102679425C199185054 @default.
- W2102679425 hasConceptScore W2102679425C28225019 @default.
- W2102679425 hasConceptScore W2102679425C33923547 @default.
- W2102679425 hasConceptScore W2102679425C36503486 @default.
- W2102679425 hasConceptScore W2102679425C60723933 @default.
- W2102679425 hasConceptScore W2102679425C62520636 @default.
- W2102679425 hasConceptScore W2102679425C84114770 @default.
- W2102679425 hasIssue "1666" @default.
- W2102679425 hasLocation W21026794251 @default.
- W2102679425 hasOpenAccess W2102679425 @default.
- W2102679425 hasPrimaryLocation W21026794251 @default.
- W2102679425 hasRelatedWork W2032608439 @default.
- W2102679425 hasRelatedWork W2057142728 @default.
- W2102679425 hasRelatedWork W2060681932 @default.
- W2102679425 hasRelatedWork W2073372811 @default.
- W2102679425 hasRelatedWork W2085973469 @default.
- W2102679425 hasRelatedWork W2099277018 @default.
- W2102679425 hasRelatedWork W2520682941 @default.
- W2102679425 hasRelatedWork W2917959062 @default.
- W2102679425 hasRelatedWork W3027020875 @default.
- W2102679425 hasRelatedWork W3087500881 @default.
- W2102679425 hasVolume "351" @default.
- W2102679425 isParatext "false" @default.
- W2102679425 isRetracted "false" @default.
- W2102679425 magId "2102679425" @default.
- W2102679425 workType "article" @default.