Matches in SemOpenAlex for { <https://semopenalex.org/work/W2102726567> ?p ?o ?g. }
- W2102726567 endingPage "1130" @default.
- W2102726567 startingPage "1122" @default.
- W2102726567 abstract "Virtual screening of a large chemical library for drug lead identification requires searching/superimposing a large number of three-dimensional (3D) chemical structures. This article reports a graphic processing unit (GPU)-accelerated weighted Gaussian algorithm (gWEGA) that expedites shape or shape-feature similarity score-based virtual screening. With 86 GPU nodes (each node has one GPU card), gWEGA can screen 110 million conformations derived from an entire ZINC drug-like database with diverse antidiabetic agents as query structures within 2 s (i.e., screening more than 55 million conformations per second). The rapid screening speed was accomplished through the massive parallelization on multiple GPU nodes and rapid prescreening of 3D structures (based on their shape descriptors and pharmacophore feature compositions)." @default.
- W2102726567 created "2016-06-24" @default.
- W2102726567 creator A5020812780 @default.
- W2102726567 creator A5038906848 @default.
- W2102726567 creator A5070005587 @default.
- W2102726567 creator A5088068064 @default.
- W2102726567 date "2014-04-12" @default.
- W2102726567 modified "2023-09-27" @default.
- W2102726567 title "gWEGA: GPU-accelerated WEGA for molecular superposition and shape comparison" @default.
- W2102726567 cites W1973858832 @default.
- W2102726567 cites W1978397363 @default.
- W2102726567 cites W1985927721 @default.
- W2102726567 cites W1989856356 @default.
- W2102726567 cites W1990010199 @default.
- W2102726567 cites W2004822259 @default.
- W2102726567 cites W2005386196 @default.
- W2102726567 cites W2013714328 @default.
- W2102726567 cites W2014104422 @default.
- W2102726567 cites W2026797273 @default.
- W2102726567 cites W2027065525 @default.
- W2102726567 cites W2027482274 @default.
- W2102726567 cites W2033160647 @default.
- W2102726567 cites W2037167896 @default.
- W2102726567 cites W2049988693 @default.
- W2102726567 cites W2057350662 @default.
- W2102726567 cites W2060153789 @default.
- W2102726567 cites W2062792224 @default.
- W2102726567 cites W2070880994 @default.
- W2102726567 cites W2072757166 @default.
- W2102726567 cites W2075186867 @default.
- W2102726567 cites W2082670236 @default.
- W2102726567 cites W2092325228 @default.
- W2102726567 cites W2099731392 @default.
- W2102726567 cites W2112946416 @default.
- W2102726567 cites W2114704115 @default.
- W2102726567 cites W2117755361 @default.
- W2102726567 cites W2144659448 @default.
- W2102726567 cites W2153693853 @default.
- W2102726567 cites W2159497832 @default.
- W2102726567 cites W2204230050 @default.
- W2102726567 cites W2206840988 @default.
- W2102726567 cites W4230466483 @default.
- W2102726567 cites W4376999360 @default.
- W2102726567 doi "https://doi.org/10.1002/jcc.23603" @default.
- W2102726567 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24729358" @default.
- W2102726567 hasPublicationYear "2014" @default.
- W2102726567 type Work @default.
- W2102726567 sameAs 2102726567 @default.
- W2102726567 citedByCount "10" @default.
- W2102726567 countsByYear W21027265672015 @default.
- W2102726567 countsByYear W21027265672016 @default.
- W2102726567 countsByYear W21027265672018 @default.
- W2102726567 countsByYear W21027265672019 @default.
- W2102726567 countsByYear W21027265672021 @default.
- W2102726567 countsByYear W21027265672022 @default.
- W2102726567 crossrefType "journal-article" @default.
- W2102726567 hasAuthorship W2102726567A5020812780 @default.
- W2102726567 hasAuthorship W2102726567A5038906848 @default.
- W2102726567 hasAuthorship W2102726567A5070005587 @default.
- W2102726567 hasAuthorship W2102726567A5088068064 @default.
- W2102726567 hasConcept C103278499 @default.
- W2102726567 hasConcept C103697762 @default.
- W2102726567 hasConcept C115961682 @default.
- W2102726567 hasConcept C116834253 @default.
- W2102726567 hasConcept C138885662 @default.
- W2102726567 hasConcept C147597530 @default.
- W2102726567 hasConcept C153180895 @default.
- W2102726567 hasConcept C154945302 @default.
- W2102726567 hasConcept C163716315 @default.
- W2102726567 hasConcept C173608175 @default.
- W2102726567 hasConcept C185592680 @default.
- W2102726567 hasConcept C2776401178 @default.
- W2102726567 hasConcept C2778119891 @default.
- W2102726567 hasConcept C2779851693 @default.
- W2102726567 hasConcept C41008148 @default.
- W2102726567 hasConcept C41895202 @default.
- W2102726567 hasConcept C459310 @default.
- W2102726567 hasConcept C55493867 @default.
- W2102726567 hasConcept C56173144 @default.
- W2102726567 hasConcept C59822182 @default.
- W2102726567 hasConcept C86803240 @default.
- W2102726567 hasConceptScore W2102726567C103278499 @default.
- W2102726567 hasConceptScore W2102726567C103697762 @default.
- W2102726567 hasConceptScore W2102726567C115961682 @default.
- W2102726567 hasConceptScore W2102726567C116834253 @default.
- W2102726567 hasConceptScore W2102726567C138885662 @default.
- W2102726567 hasConceptScore W2102726567C147597530 @default.
- W2102726567 hasConceptScore W2102726567C153180895 @default.
- W2102726567 hasConceptScore W2102726567C154945302 @default.
- W2102726567 hasConceptScore W2102726567C163716315 @default.
- W2102726567 hasConceptScore W2102726567C173608175 @default.
- W2102726567 hasConceptScore W2102726567C185592680 @default.
- W2102726567 hasConceptScore W2102726567C2776401178 @default.
- W2102726567 hasConceptScore W2102726567C2778119891 @default.
- W2102726567 hasConceptScore W2102726567C2779851693 @default.
- W2102726567 hasConceptScore W2102726567C41008148 @default.
- W2102726567 hasConceptScore W2102726567C41895202 @default.
- W2102726567 hasConceptScore W2102726567C459310 @default.