Matches in SemOpenAlex for { <https://semopenalex.org/work/W2102732320> ?p ?o ?g. }
- W2102732320 endingPage "5352" @default.
- W2102732320 startingPage "5340" @default.
- W2102732320 abstract "The partial least-square (PLS) method has been adapted to the Cox's proportional hazards model for analyzing high-dimensional survival data. But because the latent components constructed in PLS employ all predictors regardless of their relevance, it is often difficult to interpret the results. In this paper, we propose a new formulation of sparse PLS (SPLS) procedure for survival data to allow simultaneous sparse variable selection and dimension reduction. We develop a computing algorithm for SPLS by modifying an iteratively reweighted PLS algorithm and illustrate the method with the Swedish and the Netherlands Cancer Institute breast cancer datasets. Through the numerical studies, we find that our SPLS method generally performs better than the standard PLS and sparse Cox regression methods in variable selection and prediction. Copyright © 2013 John Wiley & Sons, Ltd." @default.
- W2102732320 created "2016-06-24" @default.
- W2102732320 creator A5012606625 @default.
- W2102732320 creator A5014132188 @default.
- W2102732320 creator A5027028606 @default.
- W2102732320 creator A5030458503 @default.
- W2102732320 date "2013-09-18" @default.
- W2102732320 modified "2023-10-18" @default.
- W2102732320 title "Sparse partial least-squares regression for high-throughput survival data analysis" @default.
- W2102732320 cites W1506205397 @default.
- W2102732320 cites W1989539998 @default.
- W2102732320 cites W1997213449 @default.
- W2102732320 cites W2009790769 @default.
- W2102732320 cites W2012339972 @default.
- W2102732320 cites W2019176983 @default.
- W2102732320 cites W2029218322 @default.
- W2102732320 cites W2050164872 @default.
- W2102732320 cites W2074101120 @default.
- W2102732320 cites W2089591495 @default.
- W2102732320 cites W2096079397 @default.
- W2102732320 cites W2128985829 @default.
- W2102732320 cites W2148773517 @default.
- W2102732320 cites W2149199519 @default.
- W2102732320 cites W2160450758 @default.
- W2102732320 cites W2169200817 @default.
- W2102732320 cites W2170917242 @default.
- W2102732320 cites W4248713933 @default.
- W2102732320 cites W4301861531 @default.
- W2102732320 doi "https://doi.org/10.1002/sim.5975" @default.
- W2102732320 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24105836" @default.
- W2102732320 hasPublicationYear "2013" @default.
- W2102732320 type Work @default.
- W2102732320 sameAs 2102732320 @default.
- W2102732320 citedByCount "9" @default.
- W2102732320 countsByYear W21027323202014 @default.
- W2102732320 countsByYear W21027323202015 @default.
- W2102732320 countsByYear W21027323202016 @default.
- W2102732320 countsByYear W21027323202018 @default.
- W2102732320 countsByYear W21027323202021 @default.
- W2102732320 countsByYear W21027323202022 @default.
- W2102732320 crossrefType "journal-article" @default.
- W2102732320 hasAuthorship W2102732320A5012606625 @default.
- W2102732320 hasAuthorship W2102732320A5014132188 @default.
- W2102732320 hasAuthorship W2102732320A5027028606 @default.
- W2102732320 hasAuthorship W2102732320A5030458503 @default.
- W2102732320 hasConcept C105795698 @default.
- W2102732320 hasConcept C11413529 @default.
- W2102732320 hasConcept C119857082 @default.
- W2102732320 hasConcept C124101348 @default.
- W2102732320 hasConcept C134306372 @default.
- W2102732320 hasConcept C148483581 @default.
- W2102732320 hasConcept C152877465 @default.
- W2102732320 hasConcept C154945302 @default.
- W2102732320 hasConcept C182365436 @default.
- W2102732320 hasConcept C202444582 @default.
- W2102732320 hasConcept C203868755 @default.
- W2102732320 hasConcept C22354355 @default.
- W2102732320 hasConcept C33676613 @default.
- W2102732320 hasConcept C33923547 @default.
- W2102732320 hasConcept C41008148 @default.
- W2102732320 hasConcept C50382708 @default.
- W2102732320 hasConcept C51167844 @default.
- W2102732320 hasConcept C81917197 @default.
- W2102732320 hasConcept C83546350 @default.
- W2102732320 hasConceptScore W2102732320C105795698 @default.
- W2102732320 hasConceptScore W2102732320C11413529 @default.
- W2102732320 hasConceptScore W2102732320C119857082 @default.
- W2102732320 hasConceptScore W2102732320C124101348 @default.
- W2102732320 hasConceptScore W2102732320C134306372 @default.
- W2102732320 hasConceptScore W2102732320C148483581 @default.
- W2102732320 hasConceptScore W2102732320C152877465 @default.
- W2102732320 hasConceptScore W2102732320C154945302 @default.
- W2102732320 hasConceptScore W2102732320C182365436 @default.
- W2102732320 hasConceptScore W2102732320C202444582 @default.
- W2102732320 hasConceptScore W2102732320C203868755 @default.
- W2102732320 hasConceptScore W2102732320C22354355 @default.
- W2102732320 hasConceptScore W2102732320C33676613 @default.
- W2102732320 hasConceptScore W2102732320C33923547 @default.
- W2102732320 hasConceptScore W2102732320C41008148 @default.
- W2102732320 hasConceptScore W2102732320C50382708 @default.
- W2102732320 hasConceptScore W2102732320C51167844 @default.
- W2102732320 hasConceptScore W2102732320C81917197 @default.
- W2102732320 hasConceptScore W2102732320C83546350 @default.
- W2102732320 hasIssue "30" @default.
- W2102732320 hasLocation W21027323201 @default.
- W2102732320 hasLocation W21027323202 @default.
- W2102732320 hasOpenAccess W2102732320 @default.
- W2102732320 hasPrimaryLocation W21027323201 @default.
- W2102732320 hasRelatedWork W2044948028 @default.
- W2102732320 hasRelatedWork W2102732320 @default.
- W2102732320 hasRelatedWork W2122078122 @default.
- W2102732320 hasRelatedWork W2147846880 @default.
- W2102732320 hasRelatedWork W2316704084 @default.
- W2102732320 hasRelatedWork W2371059786 @default.
- W2102732320 hasRelatedWork W2600746833 @default.
- W2102732320 hasRelatedWork W2910575305 @default.
- W2102732320 hasRelatedWork W4304730760 @default.
- W2102732320 hasRelatedWork W2895792394 @default.