Matches in SemOpenAlex for { <https://semopenalex.org/work/W2102830549> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2102830549 abstract "The objective of this work is the mining of existing experimental databases on metals and alloys to predict the corrosion resistance and behavior of metals and alloys over extended periods of time. The data mining is aimed at establishing the conditions under which certain parameter sets (i.e. Ph, temperature, time of exposure, electrolyte composition, metal composition, metallographic characteristics, etc.) may impact the alloy's localized resistance characteristics. The data mining results allow them to categorize and prioritize those parameters for which the alloy may be at risk of general and/or localized corrosion attacks. it will also help us to understand, along with the information gained through theoretical models, the synergetic effects of those variables on electrochemical potentials and corrosion rates (i.e., pitting, crack, and crevice growth rates). To accomplish the objective corrosion-related data on corrosion allowable, as well as corrosion resistive, alloys was collected for both DC and AC corrosion experiments from studies of general and localized corrosion. Collected data was transformed according to the corrosion failure modes and variables. The transformed data was checked for consistency and missing values and cleansed, as per requirements. Data from multiple experiments, figures and tables that represent the same corrosion variables were integrated intomore » a single database for further analysis. Neutral Network (NN) Backpropagation method was used to fit a preliminary model to the collected (mostly experimental) data. NN models were tested on available experimental data on corrosion allowable alloys to predict the life of the metals/alloys. NN models were also used to predict future corrosion rates for user-specified conditions and time frames. This work is part of a multi-university Corrosion Cooperative of the DOE-OCRWM Science and Technology Program established to enhance the understanding of corrosion processes and materials performance.« less" @default.
- W2102830549 created "2016-06-24" @default.
- W2102830549 creator A5063707014 @default.
- W2102830549 creator A5080810934 @default.
- W2102830549 date "2019-12-21" @default.
- W2102830549 modified "2023-09-24" @default.
- W2102830549 title "Data Mining of Experimental Corrosion Data Using Neural Network" @default.
- W2102830549 doi "https://doi.org/10.1149/1.2215491" @default.
- W2102830549 hasPublicationYear "2019" @default.
- W2102830549 type Work @default.
- W2102830549 sameAs 2102830549 @default.
- W2102830549 citedByCount "4" @default.
- W2102830549 countsByYear W21028305492015 @default.
- W2102830549 crossrefType "journal-article" @default.
- W2102830549 hasAuthorship W2102830549A5063707014 @default.
- W2102830549 hasAuthorship W2102830549A5080810934 @default.
- W2102830549 hasBestOaLocation W21028305492 @default.
- W2102830549 hasConcept C105795698 @default.
- W2102830549 hasConcept C127413603 @default.
- W2102830549 hasConcept C154945302 @default.
- W2102830549 hasConcept C18762648 @default.
- W2102830549 hasConcept C191897082 @default.
- W2102830549 hasConcept C192562407 @default.
- W2102830549 hasConcept C20625102 @default.
- W2102830549 hasConcept C2776436953 @default.
- W2102830549 hasConcept C2780026712 @default.
- W2102830549 hasConcept C2781060686 @default.
- W2102830549 hasConcept C33923547 @default.
- W2102830549 hasConcept C41008148 @default.
- W2102830549 hasConcept C50644808 @default.
- W2102830549 hasConcept C55037315 @default.
- W2102830549 hasConcept C78519656 @default.
- W2102830549 hasConcept C94124525 @default.
- W2102830549 hasConceptScore W2102830549C105795698 @default.
- W2102830549 hasConceptScore W2102830549C127413603 @default.
- W2102830549 hasConceptScore W2102830549C154945302 @default.
- W2102830549 hasConceptScore W2102830549C18762648 @default.
- W2102830549 hasConceptScore W2102830549C191897082 @default.
- W2102830549 hasConceptScore W2102830549C192562407 @default.
- W2102830549 hasConceptScore W2102830549C20625102 @default.
- W2102830549 hasConceptScore W2102830549C2776436953 @default.
- W2102830549 hasConceptScore W2102830549C2780026712 @default.
- W2102830549 hasConceptScore W2102830549C2781060686 @default.
- W2102830549 hasConceptScore W2102830549C33923547 @default.
- W2102830549 hasConceptScore W2102830549C41008148 @default.
- W2102830549 hasConceptScore W2102830549C50644808 @default.
- W2102830549 hasConceptScore W2102830549C55037315 @default.
- W2102830549 hasConceptScore W2102830549C78519656 @default.
- W2102830549 hasConceptScore W2102830549C94124525 @default.
- W2102830549 hasLocation W21028305491 @default.
- W2102830549 hasLocation W21028305492 @default.
- W2102830549 hasLocation W21028305493 @default.
- W2102830549 hasLocation W21028305494 @default.
- W2102830549 hasLocation W21028305495 @default.
- W2102830549 hasOpenAccess W2102830549 @default.
- W2102830549 hasPrimaryLocation W21028305491 @default.
- W2102830549 hasRelatedWork W10930669 @default.
- W2102830549 hasRelatedWork W14563670 @default.
- W2102830549 hasRelatedWork W33081012 @default.
- W2102830549 hasRelatedWork W33406048 @default.
- W2102830549 hasRelatedWork W37400766 @default.
- W2102830549 hasRelatedWork W41210437 @default.
- W2102830549 hasRelatedWork W4990686 @default.
- W2102830549 hasRelatedWork W5682587 @default.
- W2102830549 hasRelatedWork W6457449 @default.
- W2102830549 hasRelatedWork W37533988 @default.
- W2102830549 isParatext "false" @default.
- W2102830549 isRetracted "false" @default.
- W2102830549 magId "2102830549" @default.
- W2102830549 workType "article" @default.