Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103001484> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2103001484 endingPage "244" @default.
- W2103001484 startingPage "227" @default.
- W2103001484 abstract "Journal of Integrative NeuroscienceVol. 03, No. 02, pp. 227-244 (2004) Research ReportsNo AccessSCALING LAWS FOR MYELINATED AXONS DERIVED FROM AN ELECTROTONIC CORE-CONDUCTOR MODELPETER J. BASSERPETER J. BASSERNational Institutes of Health, 13 South Drive, Bldg. 13, Rm. 3W16, Bethesda, MD 20892-5772, USA Search for more papers by this author https://doi.org/10.1142/S0219635204000427Cited by:19 Previous AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractA macroscopic cable equation, which describes the passive linear (electrotonic) response of a myelinated axon, was previously derived from a segmented cable equation using Keller's two-space homogenization method [Basser, PJ, Med. and Biol. Comput., 1993, Vol. 31, pp. S87–S92]. Here we use the space and length constants of this averaged cable equation to predict classical scaling laws that govern relationships among the inner and outer diameters of the axon's myelin sheath and the distance separating adjacent nodes of Ranvier. These laws are derived by maximizing the characteristic speed of an electrical disturbance along the axon, i.e., the ratio of the characteristic length and the characteristic time constants of the macroscopic cable, subject to the constraint that the nodal width is constant. Using this result, it is also possible to show that all myelinated axons are equally fault tolerant. No free parameters were used in this analysis; all variables and physical constants used in these calculations were taken from published experimental data.Keywords:Scalingaxonmyelincablemodelequationtwo-space methodhomogenization References W. A. H. Rushton, J. Physiol. (London) 115, 101 (1951). Crossref, Google ScholarR. FitzHugh, Biological Engineering, ed. H. Schwan (McGraw-Hill, New York, 1969) pp. 1–83. Google ScholarL. Goldman and J. S. Albus, Biophys. J. 8, 596 (1968). Crossref, Medline, ISI, Google ScholarJ. B. Keller, Nonlinear Partial Equations in Engineering and Applied Science, eds. A. J. K. R. L. Sternberg and J. S. Papadakis (Marcel Dekker, New York, 1980) pp. 429–443. Google ScholarA. C. Guyton, Textbook of Medical Physiology, 6th edn. (W. B. Saunders, Philadelphia, 1985). Google ScholarS. G. Waxman and H. A. Sadlow, Prog. Neurobiol. 8(4), 297 (1977). Crossref, Medline, ISI, Google ScholarM. Hallett and L. G. Cohen, JAMA 262, 538 (1989). Crossref, Medline, ISI, Google ScholarF. Rattay, IEEE Trans. Biomed. Eng. 33, 974 (1986). Medline, ISI, Google ScholarP. J. Basser and B. J. Roth, Med. Biol. Eng. Comput. 29, 261 (1991). Crossref, Medline, ISI, Google ScholarB. J. Roth, L. G. Cohen and M. Hallett, Electroencephalogr. Clin. Neurophysiol. 268 (1991). Google ScholarF. Rattay, J. Theor. Biol. 125, 339 (1987). Crossref, Medline, ISI, Google ScholarF. Rattay, IEEE Trans. Biomed. Eng. 35, 199 (1988). Crossref, Medline, ISI, Google Scholar I. Tasaki , Nervous Transmission ( Charles C. Thomas , Springfield, Illinois , 1953 ) . Google ScholarJ. B. Keller, Statistical Mechanics and Statistical Methods in Theory and Applications, ed. U. Landman (Plenum Press, New York, 1977) pp. 631–644. Crossref, Google ScholarP. J. Basser, Med. & Biol. Eng. Comput. 31, S87 (1993). Crossref, Medline, Google ScholarF. Andrietti and G. Bernardini, Biophys. J. 46, 615 (1984). Crossref, Medline, ISI, Google ScholarP. J. Basser, Biomagnetic Stimulation, ed. S. Ueno (Plenum Press, New York, 1994) pp. 119–129. Crossref, Google ScholarR. FitzHugh, Biophys. J. 2, 11 (1962). Crossref, Medline, ISI, Google ScholarF. Rattay, IEEE Trans. Biomed. Eng. 36, 676 (1989). Crossref, Medline, ISI, Google ScholarJ. M. Ritchie, Proc. R. Soc. Lond. B 217, 29 (1982). Crossref, Medline, ISI, Google ScholarA. L. Hodgkin and W. A. H. Rushton, Proc. Roy. Soc. Ser. B 130, 444 (1946). Google Scholar R. Plonsey , Bioelectric Phenomena ( McGraw-Hill , New York , 1969 ) . Google ScholarL. Davis Jr. and R. Lorente deNó, Stud. Rockefeller Inst. Med. Res. 131, 442 (1947). Medline, Google Scholar J. D. Sweeney , J. T. Mortimer and D. Durand , Modeling of mammalian myelinated nerve for functional neuromuscular stimulation , presented at The 9th Annual Conference of IEEE EMBS . Google ScholarR. C. Barr and R. Plonsey, Biophys. J. 61, 1164 (1992). Crossref, Medline, ISI, Google ScholarS. Y. Chiuet al., J. Physiol. (London) 292, 149 (1979). Crossref, Google ScholarR. Stämpfli, Physiol. Rev. 34, 101 (1954). Crossref, Medline, ISI, Google Scholar FiguresReferencesRelatedDetailsCited By 19Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histologyAlberto Lazari and Ilona Lipp1 Apr 2021 | NeuroImage, Vol. 230Neural selectivity, efficiency, and dose equivalence in deep brain stimulation through pulse width tuning and segmented electrodesCollin J. Anderson, Daria Nesterovich Anderson, Stefan M. Pulst, Christopher R. Butson and Alan D. Dorval1 Jul 2020 | Brain Stimulation, Vol. 13, No. 4Individual variations of the human corticospinal tract and its hand-related motor fibers using diffusion MRI tractographyKyriakos Dalamagkas, Magdalini Tsintou, Yogesh Rathi, Lauren J. O’Donnell and Ofer Pasternak et al.8 January 2019 | Brain Imaging and Behavior, Vol. 14, No. 3Optimizing selective stimulation of peripheral nerves with arrays of coils or surface electrodes using a linear peripheral nerve stimulation metricMathias Davids, Bastien Guérin, Valerie Klein, Martin Schmelz and Lothar R Schad et al.14 January 2020 | Journal of Neural Engineering, Vol. 17, No. 1Material Characterization and Bioanalysis of Hybrid Scaffolds of Carbon Nanomaterial and Polymer NanofibersMadhulika Srikanth, Ramazan Asmatulu, Kim Cluff and Li Yao8 March 2019 | ACS Omega, Vol. 4, No. 3Regulation of myelin structure and conduction velocity by perinodal astrocytesDipankar J. Dutta, Dong Ho Woo, Philip R. Lee, Sinisa Pajevic and Olena Bukalo et al.29 October 2018 | Proceedings of the National Academy of Sciences, Vol. 115, No. 46Simulated auditory nerve axon demyelination alters sensitivity and response timing to extracellular stimulationJesse M. Resnick, Gabrielle E. O'Brien and Jay T. Rubinstein1 Apr 2018 | Hearing Research, Vol. 361Predicting Magnetostimulation Thresholds in the Peripheral Nervous System using Realistic Body ModelsMathias Davids, Bastien Guérin, Matthias Malzacher, Lothar R. Schad and Lawrence L. Wald13 July 2017 | Scientific Reports, Vol. 7, No. 1From wearable robotics to quantifiable outcomes: In vivo imaging biomarkers to accelerate the translation of new interventions in neurorehabilitationKyriakos Dalamagkas and Magdalini Tsintou1 Nov 2017Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spacesNikos Makris, A. Zhu, G. M. Papadimitriou, P. Mouradian and I. Ng et al.6 October 2016 | Brain Imaging and Behavior, Vol. 11, No. 5Precise Inference and Characterization of Structural Organization (PICASO) of tissue from molecular diffusionLipeng Ning, Evren Özarslan, Carl-Fredrik Westin and Yogesh Rathi1 Feb 2017 | NeuroImage, Vol. 146Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD)Nikolaos Makris, Yogesh Rathi, Palig Mouradian, Giorgio Bonmassar and George Papadimitriou et al.30 October 2015 | Brain Imaging and Behavior, Vol. 10, No. 4Evolution of rapid nerve conductionAnn M. Castelfranco and Daniel K. Hartline1 Jun 2016 | Brain Research, Vol. 1641Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractographyN. Makris, M. G. Preti, D. Wassermann, Y. Rathi and G. M. Papadimitriou et al.18 May 2013 | Brain Imaging and Behavior, Vol. 7, No. 3Human middle longitudinal fascicle: variations in patterns of anatomical connectionsN. Makris, M. G. Preti, T. Asami, P. Pelavin and B. Campbell et al.11 July 2012 | Brain Structure and Function, Vol. 218, No. 4An Optimum Principle Predicts the Distribution of Axon Diameters in Normal White MatterSinisa Pajevic, Peter J. Basser and Christian Beaulieu28 January 2013 | PLoS ONE, Vol. 8, No. 1Stochastic Population Model for Electrical Stimulation of the Auditory NerveN.S. Imennov and J.T. Rubinstein1 Oct 2009 | IEEE Transactions on Biomedical Engineering, Vol. 56, No. 10Tissue heterogeneity as a mechanism for localized neural stimulation by applied electric fieldsP C Miranda, L Correia, R Salvador and P J Basser3 September 2007 | Physics in Medicine and Biology, Vol. 52, No. 18The Role of Tissue Heterogeneity in Neural Stimulation by Applied Electric FieldsPedro C. Miranda, Ludovic Correia, Ricardo Salvador and Peter J. Basser1 Aug 2007 Recommended Vol. 03, No. 02 Metrics History Received 29 February 2004 Accepted 24 April 2004 KeywordsScalingaxonmyelincablemodelequationtwo-space methodhomogenizationPDF download" @default.
- W2103001484 created "2016-06-24" @default.
- W2103001484 creator A5038994213 @default.
- W2103001484 date "2004-06-01" @default.
- W2103001484 modified "2023-10-16" @default.
- W2103001484 title "SCALING LAWS FOR MYELINATED AXONS DERIVED FROM AN ELECTROTONIC CORE-CONDUCTOR MODEL" @default.
- W2103001484 cites W194524658 @default.
- W2103001484 cites W1970827634 @default.
- W2103001484 cites W1985808169 @default.
- W2103001484 cites W1991136865 @default.
- W2103001484 cites W2007989622 @default.
- W2103001484 cites W2021706887 @default.
- W2103001484 cites W2030943711 @default.
- W2103001484 cites W2050771635 @default.
- W2103001484 cites W2053267169 @default.
- W2103001484 cites W2070292294 @default.
- W2103001484 cites W2081045263 @default.
- W2103001484 cites W2087579500 @default.
- W2103001484 cites W2088888190 @default.
- W2103001484 cites W2108238513 @default.
- W2103001484 cites W2129537160 @default.
- W2103001484 cites W2222411163 @default.
- W2103001484 cites W4233776635 @default.
- W2103001484 doi "https://doi.org/10.1142/s0219635204000427" @default.
- W2103001484 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15285056" @default.
- W2103001484 hasPublicationYear "2004" @default.
- W2103001484 type Work @default.
- W2103001484 sameAs 2103001484 @default.
- W2103001484 citedByCount "21" @default.
- W2103001484 countsByYear W21030014842012 @default.
- W2103001484 countsByYear W21030014842013 @default.
- W2103001484 countsByYear W21030014842015 @default.
- W2103001484 countsByYear W21030014842016 @default.
- W2103001484 countsByYear W21030014842017 @default.
- W2103001484 countsByYear W21030014842018 @default.
- W2103001484 countsByYear W21030014842019 @default.
- W2103001484 countsByYear W21030014842020 @default.
- W2103001484 countsByYear W21030014842021 @default.
- W2103001484 crossrefType "journal-article" @default.
- W2103001484 hasAuthorship W2103001484A5038994213 @default.
- W2103001484 hasConcept C120665830 @default.
- W2103001484 hasConcept C121332964 @default.
- W2103001484 hasConcept C121864883 @default.
- W2103001484 hasConcept C159985019 @default.
- W2103001484 hasConcept C169760540 @default.
- W2103001484 hasConcept C192562407 @default.
- W2103001484 hasConcept C2164484 @default.
- W2103001484 hasConcept C2524010 @default.
- W2103001484 hasConcept C2988430800 @default.
- W2103001484 hasConcept C33923547 @default.
- W2103001484 hasConcept C34800285 @default.
- W2103001484 hasConcept C57879066 @default.
- W2103001484 hasConcept C86803240 @default.
- W2103001484 hasConcept C99844830 @default.
- W2103001484 hasConceptScore W2103001484C120665830 @default.
- W2103001484 hasConceptScore W2103001484C121332964 @default.
- W2103001484 hasConceptScore W2103001484C121864883 @default.
- W2103001484 hasConceptScore W2103001484C159985019 @default.
- W2103001484 hasConceptScore W2103001484C169760540 @default.
- W2103001484 hasConceptScore W2103001484C192562407 @default.
- W2103001484 hasConceptScore W2103001484C2164484 @default.
- W2103001484 hasConceptScore W2103001484C2524010 @default.
- W2103001484 hasConceptScore W2103001484C2988430800 @default.
- W2103001484 hasConceptScore W2103001484C33923547 @default.
- W2103001484 hasConceptScore W2103001484C34800285 @default.
- W2103001484 hasConceptScore W2103001484C57879066 @default.
- W2103001484 hasConceptScore W2103001484C86803240 @default.
- W2103001484 hasConceptScore W2103001484C99844830 @default.
- W2103001484 hasIssue "02" @default.
- W2103001484 hasLocation W21030014841 @default.
- W2103001484 hasLocation W21030014842 @default.
- W2103001484 hasOpenAccess W2103001484 @default.
- W2103001484 hasPrimaryLocation W21030014841 @default.
- W2103001484 hasRelatedWork W1671671741 @default.
- W2103001484 hasRelatedWork W1972616682 @default.
- W2103001484 hasRelatedWork W2055825719 @default.
- W2103001484 hasRelatedWork W2086713728 @default.
- W2103001484 hasRelatedWork W2090220080 @default.
- W2103001484 hasRelatedWork W2121424285 @default.
- W2103001484 hasRelatedWork W2597205018 @default.
- W2103001484 hasRelatedWork W3102564941 @default.
- W2103001484 hasRelatedWork W3102873532 @default.
- W2103001484 hasRelatedWork W341878322 @default.
- W2103001484 hasVolume "03" @default.
- W2103001484 isParatext "false" @default.
- W2103001484 isRetracted "false" @default.
- W2103001484 magId "2103001484" @default.
- W2103001484 workType "article" @default.