Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103003719> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2103003719 endingPage "448" @default.
- W2103003719 startingPage "438" @default.
- W2103003719 abstract "The microblog platforms, such as Weibo, now accumulate a large scale of data including the Tibetan messages. Discovering the latent topics from such huge volume of Tibetan data plays a significant role in tracing the dynamics of the Tibetan community, which contributes to uncover the public opinion of this community to the government. Although topic models can find out the latent structure from traditional document corpus, their performance on Tibetan messages is unsatisfactory because the short messages cause the severe data spasity challenge. In this paper, we propose a novel model called TM-ToT, which is derived from ToT (Topic over Time) aiming at mining latent topics effectively from the Tibetan messages. Firstly, we assume each topic is a mixture distribution influenced by both word co-occurrences and messages timestamps. Therefore, TM-ToT can capture the changes of each topic over time. Subsequently, we aggregate all messages published by the same author to form a lengthy pseudo-document to tackle the data sparsity problem. Finally, we present a Gibbs sampling implementation for the inference of TM-ToT. We evaluate TM-ToT on a real dataset. In our experiments, TM-ToT outperforms Twitter-LDA by a large margin in terms of perplexity. Furthermore, the quality of the generated latent topics of TM-ToT is promising." @default.
- W2103003719 created "2016-06-24" @default.
- W2103003719 creator A5045346492 @default.
- W2103003719 creator A5062630030 @default.
- W2103003719 creator A5064934176 @default.
- W2103003719 date "2014-01-01" @default.
- W2103003719 modified "2023-09-27" @default.
- W2103003719 title "TM-ToT: An Effective Model for Topic Mining from the Tibetan Messages" @default.
- W2103003719 cites W1975488756 @default.
- W2103003719 cites W2008658225 @default.
- W2103003719 cites W2018277822 @default.
- W2103003719 cites W2024791434 @default.
- W2103003719 cites W2057587538 @default.
- W2103003719 cites W2137958601 @default.
- W2103003719 cites W2168332560 @default.
- W2103003719 cites W2171343266 @default.
- W2103003719 doi "https://doi.org/10.1007/978-3-662-45924-9_40" @default.
- W2103003719 hasPublicationYear "2014" @default.
- W2103003719 type Work @default.
- W2103003719 sameAs 2103003719 @default.
- W2103003719 citedByCount "0" @default.
- W2103003719 crossrefType "book-chapter" @default.
- W2103003719 hasAuthorship W2103003719A5045346492 @default.
- W2103003719 hasAuthorship W2103003719A5062630030 @default.
- W2103003719 hasAuthorship W2103003719A5064934176 @default.
- W2103003719 hasConcept C100279451 @default.
- W2103003719 hasConcept C107673813 @default.
- W2103003719 hasConcept C113954288 @default.
- W2103003719 hasConcept C124101348 @default.
- W2103003719 hasConcept C136764020 @default.
- W2103003719 hasConcept C137293760 @default.
- W2103003719 hasConcept C143275388 @default.
- W2103003719 hasConcept C154945302 @default.
- W2103003719 hasConcept C158424031 @default.
- W2103003719 hasConcept C159985019 @default.
- W2103003719 hasConcept C171686336 @default.
- W2103003719 hasConcept C192562407 @default.
- W2103003719 hasConcept C23123220 @default.
- W2103003719 hasConcept C2522767166 @default.
- W2103003719 hasConcept C2776214188 @default.
- W2103003719 hasConcept C38652104 @default.
- W2103003719 hasConcept C41008148 @default.
- W2103003719 hasConcept C4679612 @default.
- W2103003719 hasConcept C500882744 @default.
- W2103003719 hasConcept C518677369 @default.
- W2103003719 hasConceptScore W2103003719C100279451 @default.
- W2103003719 hasConceptScore W2103003719C107673813 @default.
- W2103003719 hasConceptScore W2103003719C113954288 @default.
- W2103003719 hasConceptScore W2103003719C124101348 @default.
- W2103003719 hasConceptScore W2103003719C136764020 @default.
- W2103003719 hasConceptScore W2103003719C137293760 @default.
- W2103003719 hasConceptScore W2103003719C143275388 @default.
- W2103003719 hasConceptScore W2103003719C154945302 @default.
- W2103003719 hasConceptScore W2103003719C158424031 @default.
- W2103003719 hasConceptScore W2103003719C159985019 @default.
- W2103003719 hasConceptScore W2103003719C171686336 @default.
- W2103003719 hasConceptScore W2103003719C192562407 @default.
- W2103003719 hasConceptScore W2103003719C23123220 @default.
- W2103003719 hasConceptScore W2103003719C2522767166 @default.
- W2103003719 hasConceptScore W2103003719C2776214188 @default.
- W2103003719 hasConceptScore W2103003719C38652104 @default.
- W2103003719 hasConceptScore W2103003719C41008148 @default.
- W2103003719 hasConceptScore W2103003719C4679612 @default.
- W2103003719 hasConceptScore W2103003719C500882744 @default.
- W2103003719 hasConceptScore W2103003719C518677369 @default.
- W2103003719 hasLocation W21030037191 @default.
- W2103003719 hasOpenAccess W2103003719 @default.
- W2103003719 hasPrimaryLocation W21030037191 @default.
- W2103003719 hasRelatedWork W1463179486 @default.
- W2103003719 hasRelatedWork W1553232534 @default.
- W2103003719 hasRelatedWork W2103003719 @default.
- W2103003719 hasRelatedWork W2122605835 @default.
- W2103003719 hasRelatedWork W2339938268 @default.
- W2103003719 hasRelatedWork W2380144016 @default.
- W2103003719 hasRelatedWork W2494246486 @default.
- W2103003719 hasRelatedWork W2912294729 @default.
- W2103003719 hasRelatedWork W3035215391 @default.
- W2103003719 hasRelatedWork W4210277973 @default.
- W2103003719 isParatext "false" @default.
- W2103003719 isRetracted "false" @default.
- W2103003719 magId "2103003719" @default.
- W2103003719 workType "book-chapter" @default.