Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103014368> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2103014368 endingPage "28" @default.
- W2103014368 startingPage "1" @default.
- W2103014368 abstract "Abstract We study the classical Landau–Levich dip-coating problem for the case in which the interface possesses both elasticity and surface tension. The aim of the study is to develop a complete asymptotic theory of the elastocapillary Landau–Levich problem in the limit of small flow speeds. As such, the paper also extends our previous study on purely elastic Landau–Levich flow (Dixit & Homsy J. Fluid Mech. , vol. 732, 2013, pp. 5–28) to include the effect of surface tension. The elasticity of the interface is described by the Helfrich model and surface tension is modelled in the usual way. We define an elastocapillary number, $epsilon $ , which represents the relative strength of elasticity to surface tension. Based on the size of $epsilon $ , we can define three different regimes of interest. In each of these regimes, we carry out asymptotic expansions in the small capillary (or elasticity) numbers, which represents the balance of viscous forces to surface tension (or elasticity). In the weak elasticity regime, the film thickness is a small correction to the classical Landau–Levich law and can be written as $$begin{eqnarray*}{tilde {h} }_{infty , c} = (0. 9458- 0. 0839~mathscr{E}){l}_{c} C{a}^{2/ 3} , quad epsilon ll 1,end{eqnarray*}$$ where ${l}_{c} $ is the capillary length, $Ca$ is the capillary number and $mathscr{E}= epsilon / C{a}^{2/ 3} $ . In the elastocapillary regime, the film thickness is a function of $epsilon $ through the power-law relationship $$begin{eqnarray*}{tilde {h} }_{infty , ec} = {bar {h} }_{infty , e} Lhspace{0.167em} f(epsilon )C{a}^{4/ 7} , quad epsilon sim O(1),end{eqnarray*}$$ where ${bar {h} }_{infty , e} $ is a numerical coefficient obtained in our previous study, $L$ is the elastocapillary length, and $f(epsilon )$ represents the functional dependence of film thickness on the elastocapillary parameter." @default.
- W2103014368 created "2016-06-24" @default.
- W2103014368 creator A5012702406 @default.
- W2103014368 creator A5062071027 @default.
- W2103014368 date "2013-10-16" @default.
- W2103014368 modified "2023-09-25" @default.
- W2103014368 title "The elastocapillary Landau–Levich problem" @default.
- W2103014368 cites W1824617944 @default.
- W2103014368 cites W1972623319 @default.
- W2103014368 cites W2008600717 @default.
- W2103014368 cites W2011059366 @default.
- W2103014368 cites W2023448841 @default.
- W2103014368 cites W2044309806 @default.
- W2103014368 cites W2057285901 @default.
- W2103014368 cites W2065993008 @default.
- W2103014368 cites W2098339421 @default.
- W2103014368 cites W2107134869 @default.
- W2103014368 cites W2161260381 @default.
- W2103014368 cites W2168722131 @default.
- W2103014368 cites W2323518666 @default.
- W2103014368 cites W2336412946 @default.
- W2103014368 cites W3098030529 @default.
- W2103014368 cites W3105377883 @default.
- W2103014368 doi "https://doi.org/10.1017/jfm.2013.479" @default.
- W2103014368 hasPublicationYear "2013" @default.
- W2103014368 type Work @default.
- W2103014368 sameAs 2103014368 @default.
- W2103014368 citedByCount "8" @default.
- W2103014368 countsByYear W21030143682017 @default.
- W2103014368 countsByYear W21030143682019 @default.
- W2103014368 countsByYear W21030143682020 @default.
- W2103014368 countsByYear W21030143682022 @default.
- W2103014368 crossrefType "journal-article" @default.
- W2103014368 hasAuthorship W2103014368A5012702406 @default.
- W2103014368 hasAuthorship W2103014368A5062071027 @default.
- W2103014368 hasConcept C105795698 @default.
- W2103014368 hasConcept C121332964 @default.
- W2103014368 hasConcept C121854251 @default.
- W2103014368 hasConcept C196806460 @default.
- W2103014368 hasConcept C28413391 @default.
- W2103014368 hasConcept C33923547 @default.
- W2103014368 hasConcept C37914503 @default.
- W2103014368 hasConcept C57879066 @default.
- W2103014368 hasConcept C74650414 @default.
- W2103014368 hasConcept C87040749 @default.
- W2103014368 hasConcept C8892853 @default.
- W2103014368 hasConcept C97355855 @default.
- W2103014368 hasConceptScore W2103014368C105795698 @default.
- W2103014368 hasConceptScore W2103014368C121332964 @default.
- W2103014368 hasConceptScore W2103014368C121854251 @default.
- W2103014368 hasConceptScore W2103014368C196806460 @default.
- W2103014368 hasConceptScore W2103014368C28413391 @default.
- W2103014368 hasConceptScore W2103014368C33923547 @default.
- W2103014368 hasConceptScore W2103014368C37914503 @default.
- W2103014368 hasConceptScore W2103014368C57879066 @default.
- W2103014368 hasConceptScore W2103014368C74650414 @default.
- W2103014368 hasConceptScore W2103014368C87040749 @default.
- W2103014368 hasConceptScore W2103014368C8892853 @default.
- W2103014368 hasConceptScore W2103014368C97355855 @default.
- W2103014368 hasLocation W21030143681 @default.
- W2103014368 hasOpenAccess W2103014368 @default.
- W2103014368 hasPrimaryLocation W21030143681 @default.
- W2103014368 hasRelatedWork W118019501 @default.
- W2103014368 hasRelatedWork W155672068 @default.
- W2103014368 hasRelatedWork W1973600879 @default.
- W2103014368 hasRelatedWork W1976344385 @default.
- W2103014368 hasRelatedWork W2000554578 @default.
- W2103014368 hasRelatedWork W2054152334 @default.
- W2103014368 hasRelatedWork W2060677710 @default.
- W2103014368 hasRelatedWork W2066312885 @default.
- W2103014368 hasRelatedWork W2119597521 @default.
- W2103014368 hasRelatedWork W2601023693 @default.
- W2103014368 hasVolume "735" @default.
- W2103014368 isParatext "false" @default.
- W2103014368 isRetracted "false" @default.
- W2103014368 magId "2103014368" @default.
- W2103014368 workType "article" @default.