Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103019072> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2103019072 endingPage "607" @default.
- W2103019072 startingPage "599" @default.
- W2103019072 abstract "McClelland's (1979) cascade model is investigated, and it is shown that the model does not have a well-defined reaction time (RT) distribution function because it always predicts a nonzero probability that a response never occurs. By conditioning on the event that a response does occur, RT density and distribution functions are derived, thus allowing most RT statistics to be computed directly and eliminating the need for computer simulations. Using these results, an investigation of the model revealed that (a) it predicts mean RT additivity in most cases of pure insertion or selective influence; (b) it predicts only a very small increase in standard deviations as mean RT increases; and (c) it does not mimic the distribution of discrete-stage models that have a serial stage with an exponentially distributed duration. Recently, McClelland (1979) proposed a continuous-time linear systems model of simple cognitive processes based on sequential banks of parallel integrators. This model, referred t o by McClelland as the cascade model, exhibits some potentially very interesting properties. For example, McClelland argues that under certain conditions it mimics some of the reaction time (RT) additivities characteristic o f serial discrete-stage models. Unfortunately, however, rigorous empirical testing of the model is precluded because McClelland (1979) offers no method for computing any of the RT statistics it predicts. The format of this note is as follows: I will show that the model always predicts a nonzero probability that a response never occurs, which means, for example, that it always predicts infinite mean RTs. One way to circumvent this problem is to look only at trials on which a reponse does occur. By doing this it is possible to derive an RT probability density function predicted by the cascade model. From it, virtually any desired RT statistic can be accurately computed. Some of these (e.g., means and variances) will be examined, with particular regard to how well they correspond t o known empirical results. For example, it turns out" @default.
- W2103019072 created "2016-06-24" @default.
- W2103019072 creator A5038861821 @default.
- W2103019072 date "1982-01-01" @default.
- W2103019072 modified "2023-09-27" @default.
- W2103019072 title "Deriving exact predictions from the cascade model." @default.
- W2103019072 cites W2013068849 @default.
- W2103019072 cites W2014288790 @default.
- W2103019072 cites W2027450647 @default.
- W2103019072 cites W2032118207 @default.
- W2103019072 cites W2052646826 @default.
- W2103019072 cites W2053127376 @default.
- W2103019072 cites W2068285057 @default.
- W2103019072 cites W2071588400 @default.
- W2103019072 cites W2106654511 @default.
- W2103019072 cites W2110908281 @default.
- W2103019072 cites W2166481425 @default.
- W2103019072 doi "https://doi.org/10.1037//0033-295x.89.5.599" @default.
- W2103019072 hasPublicationYear "1982" @default.
- W2103019072 type Work @default.
- W2103019072 sameAs 2103019072 @default.
- W2103019072 citedByCount "31" @default.
- W2103019072 countsByYear W21030190722012 @default.
- W2103019072 countsByYear W21030190722013 @default.
- W2103019072 countsByYear W21030190722015 @default.
- W2103019072 crossrefType "journal-article" @default.
- W2103019072 hasAuthorship W2103019072A5038861821 @default.
- W2103019072 hasConcept C127413603 @default.
- W2103019072 hasConcept C149782125 @default.
- W2103019072 hasConcept C154945302 @default.
- W2103019072 hasConcept C15744967 @default.
- W2103019072 hasConcept C33923547 @default.
- W2103019072 hasConcept C34146451 @default.
- W2103019072 hasConcept C41008148 @default.
- W2103019072 hasConcept C42360764 @default.
- W2103019072 hasConceptScore W2103019072C127413603 @default.
- W2103019072 hasConceptScore W2103019072C149782125 @default.
- W2103019072 hasConceptScore W2103019072C154945302 @default.
- W2103019072 hasConceptScore W2103019072C15744967 @default.
- W2103019072 hasConceptScore W2103019072C33923547 @default.
- W2103019072 hasConceptScore W2103019072C34146451 @default.
- W2103019072 hasConceptScore W2103019072C41008148 @default.
- W2103019072 hasConceptScore W2103019072C42360764 @default.
- W2103019072 hasIssue "5" @default.
- W2103019072 hasLocation W21030190721 @default.
- W2103019072 hasOpenAccess W2103019072 @default.
- W2103019072 hasPrimaryLocation W21030190721 @default.
- W2103019072 hasRelatedWork W1566155057 @default.
- W2103019072 hasRelatedWork W1971748923 @default.
- W2103019072 hasRelatedWork W2060986072 @default.
- W2103019072 hasRelatedWork W2396497215 @default.
- W2103019072 hasRelatedWork W2748952813 @default.
- W2103019072 hasRelatedWork W2899084033 @default.
- W2103019072 hasRelatedWork W3107474891 @default.
- W2103019072 hasRelatedWork W3120641340 @default.
- W2103019072 hasRelatedWork W4283812524 @default.
- W2103019072 hasRelatedWork W64588465 @default.
- W2103019072 hasVolume "89" @default.
- W2103019072 isParatext "false" @default.
- W2103019072 isRetracted "false" @default.
- W2103019072 magId "2103019072" @default.
- W2103019072 workType "article" @default.