Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103066172> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2103066172 endingPage "427" @default.
- W2103066172 startingPage "416" @default.
- W2103066172 abstract " Abstract—Uncertainty is a major barrier in knowledge discovery from complex problem domains. Knowledge discovery in such domains requires qualitative rather than quantitative analysis. Therefore, the quantitative measures can be used to represent uncertainty with the integration of various models. The Bayesian Network (BN) is a widely applied technique for characterization and analysis of uncertainty in real world domains. Thus, the real application of BN can be observed in a broad range of domains such as image processing, decision making, system reliability estimation and PPDM (Privacy Preserving in Data Mining) in association rule mining and medical domain analysis. BN techniques can be used in these domains for prediction and decision support. In this article, a discussion on general BN representation, draw inferences, learning and prediction is followed by applications of BN in some specific domains. Domain specific BN representation, inferences and learning process are also presented. Building upon the knowledge presented, some future research directions are also highlighted." @default.
- W2103066172 created "2016-06-24" @default.
- W2103066172 creator A5025115747 @default.
- W2103066172 creator A5042735114 @default.
- W2103066172 creator A5055393039 @default.
- W2103066172 creator A5074514262 @default.
- W2103066172 creator A5079044716 @default.
- W2103066172 date "2015-12-01" @default.
- W2103066172 modified "2023-10-16" @default.
- W2103066172 title "An Overview of Bayesian Network Applications in Uncertain Domains" @default.
- W2103066172 cites W103951555 @default.
- W2103066172 cites W1533967694 @default.
- W2103066172 cites W1981218190 @default.
- W2103066172 cites W1981665800 @default.
- W2103066172 cites W1995779864 @default.
- W2103066172 cites W1999562040 @default.
- W2103066172 cites W2003271439 @default.
- W2103066172 cites W2033210049 @default.
- W2103066172 cites W2040768922 @default.
- W2103066172 cites W2061499892 @default.
- W2103066172 cites W2068323190 @default.
- W2103066172 cites W2075693373 @default.
- W2103066172 cites W2076737239 @default.
- W2103066172 cites W2083814382 @default.
- W2103066172 cites W2097208978 @default.
- W2103066172 cites W2098128908 @default.
- W2103066172 cites W2098652870 @default.
- W2103066172 cites W2112370365 @default.
- W2103066172 cites W2114836920 @default.
- W2103066172 cites W2117081927 @default.
- W2103066172 cites W2130939059 @default.
- W2103066172 cites W2137779110 @default.
- W2103066172 cites W2140246936 @default.
- W2103066172 cites W2141625084 @default.
- W2103066172 cites W2151882426 @default.
- W2103066172 cites W2154590984 @default.
- W2103066172 cites W2164941744 @default.
- W2103066172 doi "https://doi.org/10.7763/ijcte.2015.v7.996" @default.
- W2103066172 hasPublicationYear "2015" @default.
- W2103066172 type Work @default.
- W2103066172 sameAs 2103066172 @default.
- W2103066172 citedByCount "13" @default.
- W2103066172 countsByYear W21030661722015 @default.
- W2103066172 countsByYear W21030661722016 @default.
- W2103066172 countsByYear W21030661722017 @default.
- W2103066172 countsByYear W21030661722018 @default.
- W2103066172 countsByYear W21030661722019 @default.
- W2103066172 countsByYear W21030661722020 @default.
- W2103066172 countsByYear W21030661722022 @default.
- W2103066172 countsByYear W21030661722023 @default.
- W2103066172 crossrefType "journal-article" @default.
- W2103066172 hasAuthorship W2103066172A5025115747 @default.
- W2103066172 hasAuthorship W2103066172A5042735114 @default.
- W2103066172 hasAuthorship W2103066172A5055393039 @default.
- W2103066172 hasAuthorship W2103066172A5074514262 @default.
- W2103066172 hasAuthorship W2103066172A5079044716 @default.
- W2103066172 hasBestOaLocation W21030661721 @default.
- W2103066172 hasConcept C107673813 @default.
- W2103066172 hasConcept C154945302 @default.
- W2103066172 hasConcept C33724603 @default.
- W2103066172 hasConcept C41008148 @default.
- W2103066172 hasConceptScore W2103066172C107673813 @default.
- W2103066172 hasConceptScore W2103066172C154945302 @default.
- W2103066172 hasConceptScore W2103066172C33724603 @default.
- W2103066172 hasConceptScore W2103066172C41008148 @default.
- W2103066172 hasIssue "6" @default.
- W2103066172 hasLocation W21030661721 @default.
- W2103066172 hasOpenAccess W2103066172 @default.
- W2103066172 hasPrimaryLocation W21030661721 @default.
- W2103066172 hasRelatedWork W1502219449 @default.
- W2103066172 hasRelatedWork W1988705452 @default.
- W2103066172 hasRelatedWork W2348427740 @default.
- W2103066172 hasRelatedWork W2361294036 @default.
- W2103066172 hasRelatedWork W2370221588 @default.
- W2103066172 hasRelatedWork W2394008745 @default.
- W2103066172 hasRelatedWork W2589794759 @default.
- W2103066172 hasRelatedWork W2752082456 @default.
- W2103066172 hasRelatedWork W3151384291 @default.
- W2103066172 hasRelatedWork W4236579886 @default.
- W2103066172 hasVolume "7" @default.
- W2103066172 isParatext "false" @default.
- W2103066172 isRetracted "false" @default.
- W2103066172 magId "2103066172" @default.
- W2103066172 workType "article" @default.