Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103124754> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2103124754 abstract "Multi-view learning aims to effectively learn from data represented by multiple independent sets of attributes, where each set is taken as one view of the original data. In real-world application, each view should be acquired in unequal cost. Taking web-page classification for example, it is cheaper to get the words on itself (view one) than to get the words contained in anchor texts of inbound hyper-links (view two). However, almost all the existing multi-view learning does not consider the cost of acquiring the views or the cost of evaluating them. In this paper, we support that different views should adopt different representations and lead to different acquisition cost. Thus we develop a new view-dependent cost different from the existing both class-dependent cost and example-dependent cost. To this end, we generalize the framework of multi-view learning with the cost-sensitive technique and further propose a Cost-sensitive Multi-View Learning Machine named CMVLM for short. In implementation, we take into account and measure both the acquisition cost and the discriminant scatter of each view. Then through eliminating the useless views with a predefined threshold, we use the reserved views to train the final classifier. The experimental results on a broad range of data sets including the benchmark UCI, image, and bioinformatics data sets validate that the proposed algorithm can effectively reduce the total cost and have a competitive even better classification performance. The contributions of this paper are that: (1) first proposing a view-dependent cost; (2) establishing a cost-sensitive multi-view learning framework; (3) developing a wrapper technique that is universal to most multiple kernel based classifier." @default.
- W2103124754 created "2016-06-24" @default.
- W2103124754 creator A5003418019 @default.
- W2103124754 creator A5007052738 @default.
- W2103124754 creator A5010841617 @default.
- W2103124754 creator A5023767111 @default.
- W2103124754 creator A5075013431 @default.
- W2103124754 date "2014-05-01" @default.
- W2103124754 modified "2023-09-27" @default.
- W2103124754 title "COST-SENSITIVE MULTI-VIEW LEARNING MACHINE" @default.
- W2103124754 cites W1607624180 @default.
- W2103124754 cites W1964546829 @default.
- W2103124754 cites W1984712439 @default.
- W2103124754 cites W1985675842 @default.
- W2103124754 cites W1988486039 @default.
- W2103124754 cites W2006676204 @default.
- W2103124754 cites W2010341967 @default.
- W2103124754 cites W2018186689 @default.
- W2103124754 cites W2018762151 @default.
- W2103124754 cites W2030402233 @default.
- W2103124754 cites W2053724458 @default.
- W2103124754 cites W2081549451 @default.
- W2103124754 cites W2087684630 @default.
- W2103124754 cites W2103614420 @default.
- W2103124754 cites W2108014077 @default.
- W2103124754 cites W2116444583 @default.
- W2103124754 cites W2117991580 @default.
- W2103124754 cites W2131703348 @default.
- W2103124754 cites W2136787567 @default.
- W2103124754 cites W2143407407 @default.
- W2103124754 cites W2153918971 @default.
- W2103124754 cites W2162479195 @default.
- W2103124754 cites W2168561598 @default.
- W2103124754 cites W2214725774 @default.
- W2103124754 doi "https://doi.org/10.1142/s0218001414510045" @default.
- W2103124754 hasPublicationYear "2014" @default.
- W2103124754 type Work @default.
- W2103124754 sameAs 2103124754 @default.
- W2103124754 citedByCount "0" @default.
- W2103124754 crossrefType "journal-article" @default.
- W2103124754 hasAuthorship W2103124754A5003418019 @default.
- W2103124754 hasAuthorship W2103124754A5007052738 @default.
- W2103124754 hasAuthorship W2103124754A5010841617 @default.
- W2103124754 hasAuthorship W2103124754A5023767111 @default.
- W2103124754 hasAuthorship W2103124754A5075013431 @default.
- W2103124754 hasConcept C119857082 @default.
- W2103124754 hasConcept C124101348 @default.
- W2103124754 hasConcept C13280743 @default.
- W2103124754 hasConcept C154945302 @default.
- W2103124754 hasConcept C177264268 @default.
- W2103124754 hasConcept C185798385 @default.
- W2103124754 hasConcept C199360897 @default.
- W2103124754 hasConcept C205649164 @default.
- W2103124754 hasConcept C41008148 @default.
- W2103124754 hasConcept C78397625 @default.
- W2103124754 hasConcept C95623464 @default.
- W2103124754 hasConceptScore W2103124754C119857082 @default.
- W2103124754 hasConceptScore W2103124754C124101348 @default.
- W2103124754 hasConceptScore W2103124754C13280743 @default.
- W2103124754 hasConceptScore W2103124754C154945302 @default.
- W2103124754 hasConceptScore W2103124754C177264268 @default.
- W2103124754 hasConceptScore W2103124754C185798385 @default.
- W2103124754 hasConceptScore W2103124754C199360897 @default.
- W2103124754 hasConceptScore W2103124754C205649164 @default.
- W2103124754 hasConceptScore W2103124754C41008148 @default.
- W2103124754 hasConceptScore W2103124754C78397625 @default.
- W2103124754 hasConceptScore W2103124754C95623464 @default.
- W2103124754 hasLocation W21031247541 @default.
- W2103124754 hasOpenAccess W2103124754 @default.
- W2103124754 hasPrimaryLocation W21031247541 @default.
- W2103124754 hasRelatedWork W115417595 @default.
- W2103124754 hasRelatedWork W16521680 @default.
- W2103124754 hasRelatedWork W2060737402 @default.
- W2103124754 hasRelatedWork W2107021927 @default.
- W2103124754 hasRelatedWork W2186113565 @default.
- W2103124754 hasRelatedWork W2503743130 @default.
- W2103124754 hasRelatedWork W2520312638 @default.
- W2103124754 hasRelatedWork W2583916359 @default.
- W2103124754 hasRelatedWork W2604476911 @default.
- W2103124754 hasRelatedWork W2616870052 @default.
- W2103124754 hasRelatedWork W2766939712 @default.
- W2103124754 hasRelatedWork W2907656810 @default.
- W2103124754 hasRelatedWork W2909288227 @default.
- W2103124754 hasRelatedWork W2921034963 @default.
- W2103124754 hasRelatedWork W2951614024 @default.
- W2103124754 hasRelatedWork W2980748755 @default.
- W2103124754 hasRelatedWork W2995463097 @default.
- W2103124754 hasRelatedWork W3167851356 @default.
- W2103124754 hasRelatedWork W3189632814 @default.
- W2103124754 hasRelatedWork W3191265128 @default.
- W2103124754 isParatext "false" @default.
- W2103124754 isRetracted "false" @default.
- W2103124754 magId "2103124754" @default.
- W2103124754 workType "article" @default.