Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103135616> ?p ?o ?g. }
- W2103135616 abstract "AbstractWater distribution networks (WDNs) are among the most important and expensive municipal infrastructure assets that are vital to public health. Municipal authorities strive for implementing preventive (or proactive) programs rather than corrective (or reactive) programs. The ability to predict the failure of pipes in WDNs is vital in the proactive investment planning of replacement and rehabilitation strategies. However, due to inherent uncertainties in data and modeling, WDN failure prediction is challenging. To improve understanding of water main failure processes, accurate quantification of uncertainty is necessary. The research reported in this paper presents a comparative evaluation of the prediction accuracy of normal multiple linear regression and Bayesian regression models using water mains failure data/information from the City of Calgary. Results indicate that Bayesian regression models provide better predicted response and handle the uncertainty more accurately than normal regression model." @default.
- W2103135616 created "2016-06-24" @default.
- W2103135616 creator A5017014588 @default.
- W2103135616 creator A5021211163 @default.
- W2103135616 creator A5021400604 @default.
- W2103135616 creator A5080155703 @default.
- W2103135616 date "2015-09-01" @default.
- W2103135616 modified "2023-09-26" @default.
- W2103135616 title "Integrating Bayesian Linear Regression with Ordered Weighted Averaging: Uncertainty Analysis for Predicting Water Main Failures" @default.
- W2103135616 cites W1541033117 @default.
- W2103135616 cites W1567088756 @default.
- W2103135616 cites W1599927620 @default.
- W2103135616 cites W1964162198 @default.
- W2103135616 cites W1969780039 @default.
- W2103135616 cites W1974132866 @default.
- W2103135616 cites W1979474788 @default.
- W2103135616 cites W1980079796 @default.
- W2103135616 cites W1991674311 @default.
- W2103135616 cites W1994363126 @default.
- W2103135616 cites W2002115844 @default.
- W2103135616 cites W2004751953 @default.
- W2103135616 cites W2007202803 @default.
- W2103135616 cites W2009953370 @default.
- W2103135616 cites W2012370118 @default.
- W2103135616 cites W2012486818 @default.
- W2103135616 cites W2042874645 @default.
- W2103135616 cites W2054461639 @default.
- W2103135616 cites W2055638938 @default.
- W2103135616 cites W2055879680 @default.
- W2103135616 cites W2060907774 @default.
- W2103135616 cites W2063442045 @default.
- W2103135616 cites W2069673829 @default.
- W2103135616 cites W2076408219 @default.
- W2103135616 cites W2076577075 @default.
- W2103135616 cites W2085161477 @default.
- W2103135616 cites W2087991154 @default.
- W2103135616 cites W2106053246 @default.
- W2103135616 cites W2110892531 @default.
- W2103135616 cites W2117425477 @default.
- W2103135616 cites W2133168389 @default.
- W2103135616 cites W2135497302 @default.
- W2103135616 cites W2138348864 @default.
- W2103135616 cites W2147595926 @default.
- W2103135616 cites W2149480136 @default.
- W2103135616 cites W2153622231 @default.
- W2103135616 cites W2159554855 @default.
- W2103135616 cites W2279127960 @default.
- W2103135616 cites W2481607270 @default.
- W2103135616 cites W2493977830 @default.
- W2103135616 cites W28126692 @default.
- W2103135616 cites W3016377105 @default.
- W2103135616 cites W3048871003 @default.
- W2103135616 cites W4211084607 @default.
- W2103135616 cites W4247690662 @default.
- W2103135616 cites W4249735736 @default.
- W2103135616 cites W4252159371 @default.
- W2103135616 doi "https://doi.org/10.1061/ajrua6.0000820" @default.
- W2103135616 hasPublicationYear "2015" @default.
- W2103135616 type Work @default.
- W2103135616 sameAs 2103135616 @default.
- W2103135616 citedByCount "21" @default.
- W2103135616 countsByYear W21031356162015 @default.
- W2103135616 countsByYear W21031356162016 @default.
- W2103135616 countsByYear W21031356162017 @default.
- W2103135616 countsByYear W21031356162018 @default.
- W2103135616 countsByYear W21031356162019 @default.
- W2103135616 countsByYear W21031356162020 @default.
- W2103135616 countsByYear W21031356162021 @default.
- W2103135616 countsByYear W21031356162022 @default.
- W2103135616 countsByYear W21031356162023 @default.
- W2103135616 crossrefType "journal-article" @default.
- W2103135616 hasAuthorship W2103135616A5017014588 @default.
- W2103135616 hasAuthorship W2103135616A5021211163 @default.
- W2103135616 hasAuthorship W2103135616A5021400604 @default.
- W2103135616 hasAuthorship W2103135616A5080155703 @default.
- W2103135616 hasConcept C105795698 @default.
- W2103135616 hasConcept C107673813 @default.
- W2103135616 hasConcept C149782125 @default.
- W2103135616 hasConcept C152877465 @default.
- W2103135616 hasConcept C160234255 @default.
- W2103135616 hasConcept C33923547 @default.
- W2103135616 hasConcept C37903108 @default.
- W2103135616 hasConcept C41008148 @default.
- W2103135616 hasConcept C48921125 @default.
- W2103135616 hasConcept C83546350 @default.
- W2103135616 hasConceptScore W2103135616C105795698 @default.
- W2103135616 hasConceptScore W2103135616C107673813 @default.
- W2103135616 hasConceptScore W2103135616C149782125 @default.
- W2103135616 hasConceptScore W2103135616C152877465 @default.
- W2103135616 hasConceptScore W2103135616C160234255 @default.
- W2103135616 hasConceptScore W2103135616C33923547 @default.
- W2103135616 hasConceptScore W2103135616C37903108 @default.
- W2103135616 hasConceptScore W2103135616C41008148 @default.
- W2103135616 hasConceptScore W2103135616C48921125 @default.
- W2103135616 hasConceptScore W2103135616C83546350 @default.
- W2103135616 hasIssue "3" @default.
- W2103135616 hasLocation W21031356161 @default.
- W2103135616 hasOpenAccess W2103135616 @default.
- W2103135616 hasPrimaryLocation W21031356161 @default.
- W2103135616 hasRelatedWork W1994017266 @default.