Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103152221> ?p ?o ?g. }
- W2103152221 endingPage "95" @default.
- W2103152221 startingPage "85" @default.
- W2103152221 abstract "Resting state networks (RSNs) are of fundamental importance in human systems neuroscience with evidence suggesting that they are integral to healthy brain function and perturbed in pathology. Despite rapid progress in this area, the temporal dynamics governing the functional connectivities that underlie RSN structure remain poorly understood. Here, we present a framework to help further our understanding of RSN dynamics. We describe a methodology which exploits the direct nature and high temporal resolution of magnetoencephalography (MEG). This technique, which builds on previous work, extends from solving fundamental confounds in MEG (source leakage) to multivariate modelling of transient connectivity. The resulting processing pipeline facilitates direct (electrophysiological) measurement of dynamic functional networks. Our results show that, when functional connectivity is assessed in small time windows, the canonical sensorimotor network can be decomposed into a number of transiently synchronising sub-networks, recruitment of which depends on current mental state. These rapidly changing sub-networks are spatially focal with, for example, bilateral primary sensory and motor areas resolved into two separate sub-networks. The likely interpretation is that the larger canonical sensorimotor network most often seen in neuroimaging studies reflects only a temporal aggregate of these transient sub-networks. Our approach opens new frontiers to study RSN dynamics, showing that MEG is capable of revealing the spatial, temporal and spectral signature of the human connectome in health and disease." @default.
- W2103152221 created "2016-06-24" @default.
- W2103152221 creator A5005491067 @default.
- W2103152221 creator A5009946179 @default.
- W2103152221 creator A5074954558 @default.
- W2103152221 creator A5085008394 @default.
- W2103152221 creator A5088377480 @default.
- W2103152221 creator A5090807409 @default.
- W2103152221 date "2015-07-01" @default.
- W2103152221 modified "2023-10-18" @default.
- W2103152221 title "Dynamic recruitment of resting state sub-networks" @default.
- W2103152221 cites W1517682131 @default.
- W2103152221 cites W1760829075 @default.
- W2103152221 cites W1967064349 @default.
- W2103152221 cites W1974554864 @default.
- W2103152221 cites W1976623182 @default.
- W2103152221 cites W1977082044 @default.
- W2103152221 cites W1981619691 @default.
- W2103152221 cites W1981620337 @default.
- W2103152221 cites W1983740074 @default.
- W2103152221 cites W1987333243 @default.
- W2103152221 cites W1988945834 @default.
- W2103152221 cites W1989045420 @default.
- W2103152221 cites W1997506247 @default.
- W2103152221 cites W2002071326 @default.
- W2103152221 cites W2009494091 @default.
- W2103152221 cites W2011903382 @default.
- W2103152221 cites W2012423033 @default.
- W2103152221 cites W2020272041 @default.
- W2103152221 cites W2025341678 @default.
- W2103152221 cites W2035751680 @default.
- W2103152221 cites W2037035617 @default.
- W2103152221 cites W2041325253 @default.
- W2103152221 cites W2050708294 @default.
- W2103152221 cites W2063171028 @default.
- W2103152221 cites W2063246284 @default.
- W2103152221 cites W2069908974 @default.
- W2103152221 cites W2073780737 @default.
- W2103152221 cites W2077491345 @default.
- W2103152221 cites W2079537726 @default.
- W2103152221 cites W2088766828 @default.
- W2103152221 cites W2089093161 @default.
- W2103152221 cites W2093295640 @default.
- W2103152221 cites W2099610690 @default.
- W2103152221 cites W2100941255 @default.
- W2103152221 cites W2103433196 @default.
- W2103152221 cites W2106431739 @default.
- W2103152221 cites W2109990542 @default.
- W2103152221 cites W2120078534 @default.
- W2103152221 cites W2122418437 @default.
- W2103152221 cites W2137526583 @default.
- W2103152221 cites W2146141169 @default.
- W2103152221 cites W2147899888 @default.
- W2103152221 cites W2157308590 @default.
- W2103152221 cites W2162010696 @default.
- W2103152221 cites W2170702893 @default.
- W2103152221 cites W2321552821 @default.
- W2103152221 cites W2977883299 @default.
- W2103152221 doi "https://doi.org/10.1016/j.neuroimage.2015.04.030" @default.
- W2103152221 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4573462" @default.
- W2103152221 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25899137" @default.
- W2103152221 hasPublicationYear "2015" @default.
- W2103152221 type Work @default.
- W2103152221 sameAs 2103152221 @default.
- W2103152221 citedByCount "77" @default.
- W2103152221 countsByYear W21031522212015 @default.
- W2103152221 countsByYear W21031522212016 @default.
- W2103152221 countsByYear W21031522212017 @default.
- W2103152221 countsByYear W21031522212018 @default.
- W2103152221 countsByYear W21031522212019 @default.
- W2103152221 countsByYear W21031522212020 @default.
- W2103152221 countsByYear W21031522212021 @default.
- W2103152221 countsByYear W21031522212022 @default.
- W2103152221 countsByYear W21031522212023 @default.
- W2103152221 crossrefType "journal-article" @default.
- W2103152221 hasAuthorship W2103152221A5005491067 @default.
- W2103152221 hasAuthorship W2103152221A5009946179 @default.
- W2103152221 hasAuthorship W2103152221A5074954558 @default.
- W2103152221 hasAuthorship W2103152221A5085008394 @default.
- W2103152221 hasAuthorship W2103152221A5088377480 @default.
- W2103152221 hasAuthorship W2103152221A5090807409 @default.
- W2103152221 hasBestOaLocation W21031522211 @default.
- W2103152221 hasConcept C118615104 @default.
- W2103152221 hasConcept C119666444 @default.
- W2103152221 hasConcept C121332964 @default.
- W2103152221 hasConcept C123757187 @default.
- W2103152221 hasConcept C154945302 @default.
- W2103152221 hasConcept C15744967 @default.
- W2103152221 hasConcept C169760540 @default.
- W2103152221 hasConcept C2779097318 @default.
- W2103152221 hasConcept C2781312939 @default.
- W2103152221 hasConcept C3018011982 @default.
- W2103152221 hasConcept C33923547 @default.
- W2103152221 hasConcept C41008148 @default.
- W2103152221 hasConcept C45715564 @default.
- W2103152221 hasConcept C522805319 @default.
- W2103152221 hasConcept C556910895 @default.
- W2103152221 hasConcept C58693492 @default.