Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103156359> ?p ?o ?g. }
- W2103156359 endingPage "545" @default.
- W2103156359 startingPage "533" @default.
- W2103156359 abstract "A study of the fragmentation properties of charm and bottom quarks intoD mesons is presented. From 263 700Z 0 hadronic decays collected in 1991 with the DELPHI detector at the LEP collider,D 0,D + andD *+ are reconstructed in the modesK − π +,K − π + K + andD 0 π + followed byD 0→K − π +, respectively. The fractional decay widths $$Gamma {{(Z^0 to {D mathord{left/ {vphantom {D {bar D}}} right. kern-nulldelimiterspace} {bar D}}X)} mathord{left/ {vphantom {{(Z^0 to {D mathord{left/ {vphantom {D {bar D}}} right. kern-nulldelimiterspace} {bar D}}X)} {Gamma _h }}} right. kern-nulldelimiterspace} {Gamma _h }}$$ are determined, and first results are presented for the production ofD mesons from $$cbar c$$ and $$bbar b$$ events separately. The average energy fraction ofD *± in charm quark fragmentation is found to be 〈X E (D *)〉 c =0.487±0.015 (stat)±0.005 (sys.). Assuming that the fraction ofD s and charm-baryons produced at LEP is similar to that around 10 GeV, theZ 0 partial width into charm quark pairs is determined to beΓ c /Γ h =0.187±0.031 (stat)±0.023 (sys). The probability for ab quark to fragment into $$bar B_s $$ orb-baryons is inferred to be 0.268±0.094 (stat)±0.100 (sys) from the measured probability that it fragments into a $$bar B^0 $$ orB −." @default.
- W2103156359 created "2016-06-24" @default.
- W2103156359 creator A5000518318 @default.
- W2103156359 creator A5000558667 @default.
- W2103156359 creator A5000611181 @default.
- W2103156359 creator A5000905488 @default.
- W2103156359 creator A5001135410 @default.
- W2103156359 creator A5001206547 @default.
- W2103156359 creator A5001428515 @default.
- W2103156359 creator A5001695910 @default.
- W2103156359 creator A5002120904 @default.
- W2103156359 creator A5002138776 @default.
- W2103156359 creator A5002367642 @default.
- W2103156359 creator A5002420081 @default.
- W2103156359 creator A5002619300 @default.
- W2103156359 creator A5003024565 @default.
- W2103156359 creator A5003387405 @default.
- W2103156359 creator A5003425181 @default.
- W2103156359 creator A5003561069 @default.
- W2103156359 creator A5003721183 @default.
- W2103156359 creator A5003722861 @default.
- W2103156359 creator A5003870256 @default.
- W2103156359 creator A5003896234 @default.
- W2103156359 creator A5003985170 @default.
- W2103156359 creator A5004186985 @default.
- W2103156359 creator A5004315212 @default.
- W2103156359 creator A5004396274 @default.
- W2103156359 creator A5004467857 @default.
- W2103156359 creator A5004613584 @default.
- W2103156359 creator A5005184435 @default.
- W2103156359 creator A5005621777 @default.
- W2103156359 creator A5005903760 @default.
- W2103156359 creator A5006092954 @default.
- W2103156359 creator A5006467361 @default.
- W2103156359 creator A5006528139 @default.
- W2103156359 creator A5006535706 @default.
- W2103156359 creator A5006617055 @default.
- W2103156359 creator A5006723023 @default.
- W2103156359 creator A5006799917 @default.
- W2103156359 creator A5006994322 @default.
- W2103156359 creator A5007139850 @default.
- W2103156359 creator A5007146435 @default.
- W2103156359 creator A5007260756 @default.
- W2103156359 creator A5007666223 @default.
- W2103156359 creator A5007739537 @default.
- W2103156359 creator A5007812860 @default.
- W2103156359 creator A5008159847 @default.
- W2103156359 creator A5008276656 @default.
- W2103156359 creator A5008745081 @default.
- W2103156359 creator A5008782472 @default.
- W2103156359 creator A5008831808 @default.
- W2103156359 creator A5009345830 @default.
- W2103156359 creator A5009751312 @default.
- W2103156359 creator A5009944554 @default.
- W2103156359 creator A5010671680 @default.
- W2103156359 creator A5010690990 @default.
- W2103156359 creator A5010896470 @default.
- W2103156359 creator A5010908602 @default.
- W2103156359 creator A5011135356 @default.
- W2103156359 creator A5011220701 @default.
- W2103156359 creator A5011232713 @default.
- W2103156359 creator A5011428800 @default.
- W2103156359 creator A5011519435 @default.
- W2103156359 creator A5011647327 @default.
- W2103156359 creator A5011766832 @default.
- W2103156359 creator A5011770977 @default.
- W2103156359 creator A5011997249 @default.
- W2103156359 creator A5012287339 @default.
- W2103156359 creator A5012415830 @default.
- W2103156359 creator A5012562927 @default.
- W2103156359 creator A5012793016 @default.
- W2103156359 creator A5012819463 @default.
- W2103156359 creator A5012923807 @default.
- W2103156359 creator A5013098833 @default.
- W2103156359 creator A5013259046 @default.
- W2103156359 creator A5013700119 @default.
- W2103156359 creator A5013922621 @default.
- W2103156359 creator A5013937506 @default.
- W2103156359 creator A5014339405 @default.
- W2103156359 creator A5014568839 @default.
- W2103156359 creator A5014596258 @default.
- W2103156359 creator A5014607644 @default.
- W2103156359 creator A5014751861 @default.
- W2103156359 creator A5014951184 @default.
- W2103156359 creator A5015359456 @default.
- W2103156359 creator A5015592819 @default.
- W2103156359 creator A5015734665 @default.
- W2103156359 creator A5015741761 @default.
- W2103156359 creator A5015982633 @default.
- W2103156359 creator A5016009551 @default.
- W2103156359 creator A5016049533 @default.
- W2103156359 creator A5016176962 @default.
- W2103156359 creator A5016397919 @default.
- W2103156359 creator A5016536576 @default.
- W2103156359 creator A5016746500 @default.
- W2103156359 creator A5017279206 @default.
- W2103156359 creator A5017541148 @default.
- W2103156359 creator A5017761851 @default.