Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103180614> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2103180614 endingPage "399" @default.
- W2103180614 startingPage "371" @default.
- W2103180614 abstract "Steady, free-surface, vortical flows of an inviscid, incompressible, heavy fluid over a horizontal, rigid bottom are considered. All flows of constant depth are described for any Lipschitz vorticity distribution. It is shown that the values of Bernoullis constant, for which such flows exist, are greater than or equal to some critical value depending on the vorticity. For the critical value, only one flow exists and it is unidirectional. Supercritical flows exist for all values of Bernoullis constant greater than the critical one; every such flow is also unidirectional and its depth is smaller than that of the critical flow. Furthermore, at least one flow other than supercritical does exist for every value of Bernoullis constant greater than the critical one. It is found that for some vorticity distributions, the number of constant depth flows increases unrestrictedly as Bernoullis constant tends to infinity. However, all these flows, except for one or two, have counter-currents; their number depends on Bernoullis constant and increases by at least two every time when this constant becomes greater than a critical value (the above mentioned is the smallest of them), belonging to a sequence defined by the vorticity. A classification of vorticity distributions is presented; it divides all of them into three classes in accordance with the behaviour of some integral of the distribution on the interval [0, 1]. For distributions in the first class, a unidirectional subcritical flow exists for all admissible values of Bernoullis constant. For vorticity distributions belonging to the other two classes such a flow exists only when Bernoullis constant is less than a certain value. If Bernoullis constant is greater than this value, then at least one flow with counter-currents does exist along with the unidirectional supercritical flow. The second and third classes of vorticity distributions are distinguished from one another by the character of the counter-currents. If a distribution is in the second class, then a near-bottom counter-current is always present for sufficiently large values of Bernoullis constant. For distributions in the third class, a near-surface counter-current is always present for such values of the constant. Several examples illustrating the results are considered." @default.
- W2103180614 created "2016-06-24" @default.
- W2103180614 creator A5062775542 @default.
- W2103180614 creator A5079716919 @default.
- W2103180614 date "2011-07-16" @default.
- W2103180614 modified "2023-09-25" @default.
- W2103180614 title "Steady Free-Surface Vortical Flows Parallel to the Horizontal Bottom" @default.
- W2103180614 cites W1965177174 @default.
- W2103180614 cites W1972412915 @default.
- W2103180614 cites W1983210113 @default.
- W2103180614 cites W1986338054 @default.
- W2103180614 cites W2011000117 @default.
- W2103180614 cites W2033946502 @default.
- W2103180614 cites W2035837505 @default.
- W2103180614 cites W2117320072 @default.
- W2103180614 cites W2138108621 @default.
- W2103180614 cites W2162307789 @default.
- W2103180614 doi "https://doi.org/10.1093/qjmam/hbr010" @default.
- W2103180614 hasPublicationYear "2011" @default.
- W2103180614 type Work @default.
- W2103180614 sameAs 2103180614 @default.
- W2103180614 citedByCount "17" @default.
- W2103180614 countsByYear W21031806142012 @default.
- W2103180614 countsByYear W21031806142013 @default.
- W2103180614 countsByYear W21031806142014 @default.
- W2103180614 countsByYear W21031806142015 @default.
- W2103180614 countsByYear W21031806142017 @default.
- W2103180614 countsByYear W21031806142019 @default.
- W2103180614 countsByYear W21031806142022 @default.
- W2103180614 countsByYear W21031806142023 @default.
- W2103180614 crossrefType "journal-article" @default.
- W2103180614 hasAuthorship W2103180614A5062775542 @default.
- W2103180614 hasAuthorship W2103180614A5079716919 @default.
- W2103180614 hasBestOaLocation W21031806141 @default.
- W2103180614 hasConcept C121332964 @default.
- W2103180614 hasConcept C127313418 @default.
- W2103180614 hasConcept C171889981 @default.
- W2103180614 hasConcept C2524010 @default.
- W2103180614 hasConcept C2776799497 @default.
- W2103180614 hasConcept C33923547 @default.
- W2103180614 hasConcept C57879066 @default.
- W2103180614 hasConceptScore W2103180614C121332964 @default.
- W2103180614 hasConceptScore W2103180614C127313418 @default.
- W2103180614 hasConceptScore W2103180614C171889981 @default.
- W2103180614 hasConceptScore W2103180614C2524010 @default.
- W2103180614 hasConceptScore W2103180614C2776799497 @default.
- W2103180614 hasConceptScore W2103180614C33923547 @default.
- W2103180614 hasConceptScore W2103180614C57879066 @default.
- W2103180614 hasIssue "3" @default.
- W2103180614 hasLocation W21031806141 @default.
- W2103180614 hasOpenAccess W2103180614 @default.
- W2103180614 hasPrimaryLocation W21031806141 @default.
- W2103180614 hasRelatedWork W1973755750 @default.
- W2103180614 hasRelatedWork W1977731209 @default.
- W2103180614 hasRelatedWork W1999263000 @default.
- W2103180614 hasRelatedWork W2013271325 @default.
- W2103180614 hasRelatedWork W2128910798 @default.
- W2103180614 hasRelatedWork W2164475056 @default.
- W2103180614 hasRelatedWork W2329481400 @default.
- W2103180614 hasRelatedWork W2388350873 @default.
- W2103180614 hasRelatedWork W3123099071 @default.
- W2103180614 hasRelatedWork W814185446 @default.
- W2103180614 hasVolume "64" @default.
- W2103180614 isParatext "false" @default.
- W2103180614 isRetracted "false" @default.
- W2103180614 magId "2103180614" @default.
- W2103180614 workType "article" @default.