Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103210097> ?p ?o ?g. }
- W2103210097 endingPage "1157" @default.
- W2103210097 startingPage "1109" @default.
- W2103210097 abstract "In this paper, we consider and examine alternate finite element computational strategies for time-dependent Navier–Stokes equations describing high-speed compressible flows with shocks in a viscous and conducting medium, with the ultimate objective of establishing the desired features of a general mathematical and computational framework for such initial value problems (IVP) in which: (a) the numerically computed solutions are in agreement with the physics of evolution described by the governing differential equations (GDEs) i.e. the IVP, (b) the solutions are admissible in the non-discretized form of the GDEs in the pointwise sense (i.e. anywhere and everywhere) in the entire space–time domain, and hence in the integrated sense as well, (c) the numerical approximations progressively approach the same global differentiability in space and time as the theoretical solutions, (d) it is possible to time march the solutions (this is essential for efficiency as well as ensuring desired accuracy of the computed solution for the current increment of time, i.e. to minimize the error build up in the time marching process), (e) the computational process is unconditionally stable and non-degenerate regardless of the choice of discretization, nature of approximations and their global differentiability and the dimensionless parameters influencing the physics of the process, (f) there are no issues of stability, CFL number limitations and (g) the mathematical and computational methodology is independent of the nature of the space–time differential operators. We consider one-dimensional compressible flow in a viscous and conducting medium with shocks as model problems to illustrate various features of the general mathematical and computational framework used here and to demonstrate that the proposed framework is general and is applicable to all IVP. The Riemann shock tube with a single diaphragm serves as a model problem. The specific details presented in the paper discuss: (1) Choice of the form of the GDEs, i.e. strong form or weak form. (2) Various choices of variables. The paper establishes and considers density, velocity and temperature as variables of choice. (3) Details of the space–time least squares (LS) integral forms (meritorious over all others in all aspects) are presented and choice of approximation spaces are discussed. (4) In all numerical studies we consider a viscous and conducting medium with ideal gas law, however results are also presented for non-conducting medium. Extension of this work to real gas models will be presented in a separate paper. It is worth noting that when the medium is viscous and conducting, the solutions of gas dynamics equations are analytic. (5) It is also significant to note that upwinding methods based on addition of artificial diffusion such as SUPG, SUPG/DC, SUPG/DC/LS and their many variations are neither needed nor used in this present work. (6) Numerical studies are aimed at resolving the localized details of the shock structure, i.e. shock relations, shock width, shock speed, etc. as well as the over all global behaviour of the solution in the entire space–time domain. (7) Numerical studies are presented for Riemann shock tube for high Mach number flows with special emphasis also on time accuracy of the evolution which is ensured by requiring that the approximations for each increment of time satisfy non-discretized form of the GDEs in the pointwise sense, and hence in the integrated sense as well. (8) Comparisons are made with published results as well as theoretical solutions (when possible). It is established that space–time least squares processes are the only processes that yield variationally consistent space–time integral forms, and hence unconditionally non-degenerate space–time computational processes, which when considered in higher-order scalar product spaces provide the desired mathematical framework in which progressively higher-order global differentiability solutions in space and time yield the same characteristics as the theoretical solutions of the IVP in all aspects. Copyright © 2006 John Wiley & Sons, Ltd." @default.
- W2103210097 created "2016-06-24" @default.
- W2103210097 creator A5016498640 @default.
- W2103210097 creator A5022232087 @default.
- W2103210097 creator A5044333753 @default.
- W2103210097 creator A5083314175 @default.
- W2103210097 date "2007-01-01" @default.
- W2103210097 modified "2023-09-27" @default.
- W2103210097 title "k-version of finite element method in gas dynamics: higher-order global differentiability numerical solutions" @default.
- W2103210097 cites W1973103360 @default.
- W2103210097 cites W1975961474 @default.
- W2103210097 cites W1979419956 @default.
- W2103210097 cites W1979560958 @default.
- W2103210097 cites W1980281514 @default.
- W2103210097 cites W1990083960 @default.
- W2103210097 cites W1992073061 @default.
- W2103210097 cites W1996830951 @default.
- W2103210097 cites W1999258459 @default.
- W2103210097 cites W2014445341 @default.
- W2103210097 cites W2021223635 @default.
- W2103210097 cites W2023862725 @default.
- W2103210097 cites W2025786651 @default.
- W2103210097 cites W2026039582 @default.
- W2103210097 cites W2027689510 @default.
- W2103210097 cites W2030786111 @default.
- W2103210097 cites W2033598014 @default.
- W2103210097 cites W2037160381 @default.
- W2103210097 cites W2063263577 @default.
- W2103210097 cites W2072819569 @default.
- W2103210097 cites W2075169689 @default.
- W2103210097 cites W2081384586 @default.
- W2103210097 cites W2091156165 @default.
- W2103210097 cites W2095327521 @default.
- W2103210097 cites W2107005165 @default.
- W2103210097 cites W2108867814 @default.
- W2103210097 cites W2127567312 @default.
- W2103210097 cites W2137161281 @default.
- W2103210097 cites W2152320501 @default.
- W2103210097 cites W2152795565 @default.
- W2103210097 cites W2157542012 @default.
- W2103210097 cites W2164164518 @default.
- W2103210097 cites W2172081475 @default.
- W2103210097 cites W4205777361 @default.
- W2103210097 cites W4234789338 @default.
- W2103210097 cites W4235380276 @default.
- W2103210097 cites W4237886007 @default.
- W2103210097 doi "https://doi.org/10.1002/nme.1801" @default.
- W2103210097 hasPublicationYear "2007" @default.
- W2103210097 type Work @default.
- W2103210097 sameAs 2103210097 @default.
- W2103210097 citedByCount "20" @default.
- W2103210097 countsByYear W21032100972012 @default.
- W2103210097 countsByYear W21032100972013 @default.
- W2103210097 countsByYear W21032100972014 @default.
- W2103210097 countsByYear W21032100972015 @default.
- W2103210097 countsByYear W21032100972016 @default.
- W2103210097 countsByYear W21032100972018 @default.
- W2103210097 countsByYear W21032100972019 @default.
- W2103210097 countsByYear W21032100972020 @default.
- W2103210097 countsByYear W21032100972021 @default.
- W2103210097 crossrefType "journal-article" @default.
- W2103210097 hasAuthorship W2103210097A5016498640 @default.
- W2103210097 hasAuthorship W2103210097A5022232087 @default.
- W2103210097 hasAuthorship W2103210097A5044333753 @default.
- W2103210097 hasAuthorship W2103210097A5083314175 @default.
- W2103210097 hasConcept C121332964 @default.
- W2103210097 hasConcept C134306372 @default.
- W2103210097 hasConcept C135628077 @default.
- W2103210097 hasConcept C202615002 @default.
- W2103210097 hasConcept C2524010 @default.
- W2103210097 hasConcept C2777984123 @default.
- W2103210097 hasConcept C28826006 @default.
- W2103210097 hasConcept C33923547 @default.
- W2103210097 hasConcept C38349280 @default.
- W2103210097 hasConcept C73000952 @default.
- W2103210097 hasConcept C93779851 @default.
- W2103210097 hasConcept C97355855 @default.
- W2103210097 hasConceptScore W2103210097C121332964 @default.
- W2103210097 hasConceptScore W2103210097C134306372 @default.
- W2103210097 hasConceptScore W2103210097C135628077 @default.
- W2103210097 hasConceptScore W2103210097C202615002 @default.
- W2103210097 hasConceptScore W2103210097C2524010 @default.
- W2103210097 hasConceptScore W2103210097C2777984123 @default.
- W2103210097 hasConceptScore W2103210097C28826006 @default.
- W2103210097 hasConceptScore W2103210097C33923547 @default.
- W2103210097 hasConceptScore W2103210097C38349280 @default.
- W2103210097 hasConceptScore W2103210097C73000952 @default.
- W2103210097 hasConceptScore W2103210097C93779851 @default.
- W2103210097 hasConceptScore W2103210097C97355855 @default.
- W2103210097 hasIssue "6" @default.
- W2103210097 hasLocation W21032100971 @default.
- W2103210097 hasOpenAccess W2103210097 @default.
- W2103210097 hasPrimaryLocation W21032100971 @default.
- W2103210097 hasRelatedWork W1605821011 @default.
- W2103210097 hasRelatedWork W1984946324 @default.
- W2103210097 hasRelatedWork W2056066177 @default.
- W2103210097 hasRelatedWork W2066872858 @default.
- W2103210097 hasRelatedWork W2106161007 @default.