Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103238401> ?p ?o ?g. }
- W2103238401 endingPage "58" @default.
- W2103238401 startingPage "46" @default.
- W2103238401 abstract "The circulation of intermediate waters plays an important role in global heat and carbon transport in the ocean and changes in their distribution are closely tied to glacial–interglacial climate change. Coupled radiocarbon and U/Th measurements on deep-sea Desmophyllum dianthus corals allow for the reconstruction of past intermediate water ventilation. We present a high-resolution time series of Antarctic Intermediate Water radiocarbon from 44 corals spanning 30 ka through the start of the Holocene, encompassing the transition into the Last Glacial Maximum (LGM) and the last deglaciation. Corals were collected south of Tasmania from water depths between 1430 and 1950 m with 80% of them between 1500 and 1700 m, giving us a continuous record from a narrow depth range. The record shows three distinct periods of circulation: the MIS 3–2 transition, the LGM/Heinrich Stadial 1 (extending from ∼22 to 16 kyr BP), and the Antarctic Cold Reversal (ACR). The MIS 3–2 transition and the ACR are characterized by abrupt changes in intermediate water radiocarbon while the LGM time period generally follows the atmosphere at a constant offset, in support of the idea that the LGM ocean was at steady state for its 14C distribution. Closer inspection of the LGM time period reveals a 40‰ jump at ∼19 ka from an atmospheric offset of roughly 230‰ to 190‰, coincident with an observed 10–15 m rise in sea level and a southward shift of the Subantarctic and Polar Fronts, an abrupt change not seen in deeper records. During the ACR time period intermediate water radiocarbon is on average less offset from the atmosphere (∼110‰) and much more variable. This variability has been captured within the lifetimes of three individual corals with changes of up to 35‰ over ∼40 yr, likely caused by the movement of Southern Ocean fronts. This surprising result of relatively young and variable intermediate water radiocarbon during the ACR seems to go against the canonical idea of reduced circulation and ventilation in the south during this time period. However comparisons with other records from the Southern Ocean highlight zonal asymmetries, which can explain the deviation of our Tasmanian record from those in Drake Passage and the eastern Pacific. These signals seen in Tasmanian intermediate water Δ14C can also be found in Greenland ice core δ18O and East Asian monsoon strength. Throughout the LGM and the deglaciation, our Tasmanian intermediate water record is sensitive to times when the upper and lower cells of the meridional overturning circulation are more or less interconnected, which has important implications for the global climate system on glacial–interglacial time scales." @default.
- W2103238401 created "2016-06-24" @default.
- W2103238401 creator A5034826613 @default.
- W2103238401 creator A5034974998 @default.
- W2103238401 creator A5043939464 @default.
- W2103238401 date "2015-12-01" @default.
- W2103238401 modified "2023-10-18" @default.
- W2103238401 title "A high-resolution record of Southern Ocean intermediate water radiocarbon over the past 30,000 years" @default.
- W2103238401 cites W1481746305 @default.
- W2103238401 cites W1482261865 @default.
- W2103238401 cites W1609491364 @default.
- W2103238401 cites W1611443029 @default.
- W2103238401 cites W1667204707 @default.
- W2103238401 cites W1964950613 @default.
- W2103238401 cites W1967060365 @default.
- W2103238401 cites W1971816180 @default.
- W2103238401 cites W1980542893 @default.
- W2103238401 cites W1981976147 @default.
- W2103238401 cites W1982364154 @default.
- W2103238401 cites W1985246090 @default.
- W2103238401 cites W1990753866 @default.
- W2103238401 cites W1994008148 @default.
- W2103238401 cites W1996862213 @default.
- W2103238401 cites W2001072306 @default.
- W2103238401 cites W2012434986 @default.
- W2103238401 cites W2018156694 @default.
- W2103238401 cites W2018799022 @default.
- W2103238401 cites W2034273178 @default.
- W2103238401 cites W2035587516 @default.
- W2103238401 cites W2042476750 @default.
- W2103238401 cites W2054153452 @default.
- W2103238401 cites W2063176407 @default.
- W2103238401 cites W2064368240 @default.
- W2103238401 cites W2066715697 @default.
- W2103238401 cites W2068142175 @default.
- W2103238401 cites W2074534955 @default.
- W2103238401 cites W2074901826 @default.
- W2103238401 cites W2076254583 @default.
- W2103238401 cites W2076823280 @default.
- W2103238401 cites W2079487889 @default.
- W2103238401 cites W2086192317 @default.
- W2103238401 cites W2091771644 @default.
- W2103238401 cites W2094382046 @default.
- W2103238401 cites W2095757677 @default.
- W2103238401 cites W2098081109 @default.
- W2103238401 cites W2114311956 @default.
- W2103238401 cites W2130634420 @default.
- W2103238401 cites W2131714287 @default.
- W2103238401 cites W2132999078 @default.
- W2103238401 cites W2136768862 @default.
- W2103238401 cites W2136778644 @default.
- W2103238401 cites W2141637972 @default.
- W2103238401 cites W2144484775 @default.
- W2103238401 cites W2146629632 @default.
- W2103238401 cites W2150142632 @default.
- W2103238401 cites W2151952626 @default.
- W2103238401 cites W2156208893 @default.
- W2103238401 cites W2161889884 @default.
- W2103238401 cites W2174671483 @default.
- W2103238401 cites W2332223564 @default.
- W2103238401 cites W4211135859 @default.
- W2103238401 cites W4294555410 @default.
- W2103238401 doi "https://doi.org/10.1016/j.epsl.2015.09.038" @default.
- W2103238401 hasPublicationYear "2015" @default.
- W2103238401 type Work @default.
- W2103238401 sameAs 2103238401 @default.
- W2103238401 citedByCount "38" @default.
- W2103238401 countsByYear W21032384012016 @default.
- W2103238401 countsByYear W21032384012017 @default.
- W2103238401 countsByYear W21032384012018 @default.
- W2103238401 countsByYear W21032384012019 @default.
- W2103238401 countsByYear W21032384012020 @default.
- W2103238401 countsByYear W21032384012021 @default.
- W2103238401 countsByYear W21032384012022 @default.
- W2103238401 countsByYear W21032384012023 @default.
- W2103238401 crossrefType "journal-article" @default.
- W2103238401 hasAuthorship W2103238401A5034826613 @default.
- W2103238401 hasAuthorship W2103238401A5034974998 @default.
- W2103238401 hasAuthorship W2103238401A5043939464 @default.
- W2103238401 hasBestOaLocation W21032384011 @default.
- W2103238401 hasConcept C100134115 @default.
- W2103238401 hasConcept C111368507 @default.
- W2103238401 hasConcept C127313418 @default.
- W2103238401 hasConcept C140345934 @default.
- W2103238401 hasConcept C151730666 @default.
- W2103238401 hasConcept C15739521 @default.
- W2103238401 hasConcept C180705331 @default.
- W2103238401 hasConcept C186240526 @default.
- W2103238401 hasConcept C188291805 @default.
- W2103238401 hasConcept C49204034 @default.
- W2103238401 hasConcept C65814071 @default.
- W2103238401 hasConceptScore W2103238401C100134115 @default.
- W2103238401 hasConceptScore W2103238401C111368507 @default.
- W2103238401 hasConceptScore W2103238401C127313418 @default.
- W2103238401 hasConceptScore W2103238401C140345934 @default.
- W2103238401 hasConceptScore W2103238401C151730666 @default.
- W2103238401 hasConceptScore W2103238401C15739521 @default.
- W2103238401 hasConceptScore W2103238401C180705331 @default.