Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103251750> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2103251750 abstract "This study proposes a hybrid model which combines the linear autoregression (AR) with the nonlinear neural network (NN) based on the extreme learning machine (ELM) in an integral structure in order to improve the accuracy of time-series prediction. Unlike the developed hybrid forecasting models introduced in the literature, which usually treat the original forecasting models as a separate linear or nonlinear unit, the proposed hybrid model is an integrated model which can adapt well to both linear and non-linear situations often in periodical time series with a complicated structure. The hybrid algorithm is tested against different kinds of time series data and the results indicate that the hybrid algorithm outperforms the AR and the ELM-based neural network." @default.
- W2103251750 created "2016-06-24" @default.
- W2103251750 creator A5022715637 @default.
- W2103251750 creator A5043614252 @default.
- W2103251750 creator A5045380530 @default.
- W2103251750 date "2009-01-01" @default.
- W2103251750 modified "2023-10-10" @default.
- W2103251750 title "A Hybrid Time-Series Forecasting Model Using Extreme Learning Machines" @default.
- W2103251750 cites W1997754540 @default.
- W2103251750 cites W2007789460 @default.
- W2103251750 cites W2028747913 @default.
- W2103251750 cites W2054064073 @default.
- W2103251750 cites W2111072639 @default.
- W2103251750 cites W2117014758 @default.
- W2103251750 cites W2132955566 @default.
- W2103251750 cites W2134603844 @default.
- W2103251750 cites W2138623253 @default.
- W2103251750 cites W2141695047 @default.
- W2103251750 cites W2167982865 @default.
- W2103251750 cites W2169976759 @default.
- W2103251750 cites W2172073485 @default.
- W2103251750 doi "https://doi.org/10.1109/icicta.2009.232" @default.
- W2103251750 hasPublicationYear "2009" @default.
- W2103251750 type Work @default.
- W2103251750 sameAs 2103251750 @default.
- W2103251750 citedByCount "9" @default.
- W2103251750 countsByYear W21032517502013 @default.
- W2103251750 countsByYear W21032517502016 @default.
- W2103251750 countsByYear W21032517502018 @default.
- W2103251750 countsByYear W21032517502020 @default.
- W2103251750 countsByYear W21032517502021 @default.
- W2103251750 countsByYear W21032517502022 @default.
- W2103251750 crossrefType "proceedings-article" @default.
- W2103251750 hasAuthorship W2103251750A5022715637 @default.
- W2103251750 hasAuthorship W2103251750A5043614252 @default.
- W2103251750 hasAuthorship W2103251750A5045380530 @default.
- W2103251750 hasConcept C11413529 @default.
- W2103251750 hasConcept C119857082 @default.
- W2103251750 hasConcept C121332964 @default.
- W2103251750 hasConcept C143724316 @default.
- W2103251750 hasConcept C149782125 @default.
- W2103251750 hasConcept C151406439 @default.
- W2103251750 hasConcept C151730666 @default.
- W2103251750 hasConcept C154945302 @default.
- W2103251750 hasConcept C158622935 @default.
- W2103251750 hasConcept C159877910 @default.
- W2103251750 hasConcept C163175372 @default.
- W2103251750 hasConcept C2780150128 @default.
- W2103251750 hasConcept C33923547 @default.
- W2103251750 hasConcept C41008148 @default.
- W2103251750 hasConcept C50644808 @default.
- W2103251750 hasConcept C62520636 @default.
- W2103251750 hasConcept C86803240 @default.
- W2103251750 hasConceptScore W2103251750C11413529 @default.
- W2103251750 hasConceptScore W2103251750C119857082 @default.
- W2103251750 hasConceptScore W2103251750C121332964 @default.
- W2103251750 hasConceptScore W2103251750C143724316 @default.
- W2103251750 hasConceptScore W2103251750C149782125 @default.
- W2103251750 hasConceptScore W2103251750C151406439 @default.
- W2103251750 hasConceptScore W2103251750C151730666 @default.
- W2103251750 hasConceptScore W2103251750C154945302 @default.
- W2103251750 hasConceptScore W2103251750C158622935 @default.
- W2103251750 hasConceptScore W2103251750C159877910 @default.
- W2103251750 hasConceptScore W2103251750C163175372 @default.
- W2103251750 hasConceptScore W2103251750C2780150128 @default.
- W2103251750 hasConceptScore W2103251750C33923547 @default.
- W2103251750 hasConceptScore W2103251750C41008148 @default.
- W2103251750 hasConceptScore W2103251750C50644808 @default.
- W2103251750 hasConceptScore W2103251750C62520636 @default.
- W2103251750 hasConceptScore W2103251750C86803240 @default.
- W2103251750 hasLocation W21032517501 @default.
- W2103251750 hasOpenAccess W2103251750 @default.
- W2103251750 hasPrimaryLocation W21032517501 @default.
- W2103251750 hasRelatedWork W1550175370 @default.
- W2103251750 hasRelatedWork W1990205660 @default.
- W2103251750 hasRelatedWork W2018248418 @default.
- W2103251750 hasRelatedWork W2067443264 @default.
- W2103251750 hasRelatedWork W2119012848 @default.
- W2103251750 hasRelatedWork W2349019353 @default.
- W2103251750 hasRelatedWork W3124468282 @default.
- W2103251750 hasRelatedWork W3124898220 @default.
- W2103251750 hasRelatedWork W4387331850 @default.
- W2103251750 hasRelatedWork W2622688551 @default.
- W2103251750 isParatext "false" @default.
- W2103251750 isRetracted "false" @default.
- W2103251750 magId "2103251750" @default.
- W2103251750 workType "article" @default.