Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103266366> ?p ?o ?g. }
- W2103266366 endingPage "624" @default.
- W2103266366 startingPage "610" @default.
- W2103266366 abstract "Large-margin methods, such as support vector machines (SVMs), have been very successful in classification problems. Recently, maximum margin discriminant analysis (MMDA) was proposed that extends the large-margin idea to feature extraction. It often outperforms traditional methods such as kernel principal component analysis (KPCA) and kernel Fisher discriminant analysis (KFD). However, as in the SVM, its time complexity is cubic in the number of training points m, and is thus computationally inefficient on massive data sets. In this paper, we propose an (1+epsilon)(2)-approximation algorithm for obtaining the MMDA features by extending the core vector machine. The resultant time complexity is only linear in m, while its space complexity is independent of m. Extensive comparisons with the original MMDA, KPCA, and KFD on a number of large data sets show that the proposed feature extractor can improve classification accuracy, and is also faster than these kernel-based methods by over an order of magnitude." @default.
- W2103266366 created "2016-06-24" @default.
- W2103266366 creator A5020008023 @default.
- W2103266366 creator A5070273088 @default.
- W2103266366 creator A5091587294 @default.
- W2103266366 date "2008-04-01" @default.
- W2103266366 modified "2023-09-30" @default.
- W2103266366 title "Large-Scale Maximum Margin Discriminant Analysis Using Core Vector Machines" @default.
- W2103266366 cites W1516682325 @default.
- W2103266366 cites W1606191370 @default.
- W2103266366 cites W1621799579 @default.
- W2103266366 cites W2014247110 @default.
- W2103266366 cites W2016406192 @default.
- W2103266366 cites W2029494882 @default.
- W2103266366 cites W2041657594 @default.
- W2103266366 cites W2090425484 @default.
- W2103266366 cites W2097893439 @default.
- W2103266366 cites W2100038678 @default.
- W2103266366 cites W2114296668 @default.
- W2103266366 cites W2132425109 @default.
- W2103266366 cites W2138907228 @default.
- W2103266366 cites W2140095548 @default.
- W2103266366 cites W2143426320 @default.
- W2103266366 cites W2150796457 @default.
- W2103266366 cites W2161419360 @default.
- W2103266366 cites W4243539849 @default.
- W2103266366 cites W4250589301 @default.
- W2103266366 cites W4253418273 @default.
- W2103266366 doi "https://doi.org/10.1109/tnn.2007.911746" @default.
- W2103266366 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18390308" @default.
- W2103266366 hasPublicationYear "2008" @default.
- W2103266366 type Work @default.
- W2103266366 sameAs 2103266366 @default.
- W2103266366 citedByCount "50" @default.
- W2103266366 countsByYear W21032663662012 @default.
- W2103266366 countsByYear W21032663662013 @default.
- W2103266366 countsByYear W21032663662014 @default.
- W2103266366 countsByYear W21032663662015 @default.
- W2103266366 countsByYear W21032663662016 @default.
- W2103266366 countsByYear W21032663662017 @default.
- W2103266366 countsByYear W21032663662018 @default.
- W2103266366 countsByYear W21032663662019 @default.
- W2103266366 countsByYear W21032663662020 @default.
- W2103266366 countsByYear W21032663662023 @default.
- W2103266366 crossrefType "journal-article" @default.
- W2103266366 hasAuthorship W2103266366A5020008023 @default.
- W2103266366 hasAuthorship W2103266366A5070273088 @default.
- W2103266366 hasAuthorship W2103266366A5091587294 @default.
- W2103266366 hasConcept C114614502 @default.
- W2103266366 hasConcept C119857082 @default.
- W2103266366 hasConcept C122280245 @default.
- W2103266366 hasConcept C12267149 @default.
- W2103266366 hasConcept C153180895 @default.
- W2103266366 hasConcept C154945302 @default.
- W2103266366 hasConcept C181367576 @default.
- W2103266366 hasConcept C182335926 @default.
- W2103266366 hasConcept C27438332 @default.
- W2103266366 hasConcept C33923547 @default.
- W2103266366 hasConcept C41008148 @default.
- W2103266366 hasConcept C52622490 @default.
- W2103266366 hasConcept C69738355 @default.
- W2103266366 hasConcept C74193536 @default.
- W2103266366 hasConcept C774472 @default.
- W2103266366 hasConcept C83665646 @default.
- W2103266366 hasConceptScore W2103266366C114614502 @default.
- W2103266366 hasConceptScore W2103266366C119857082 @default.
- W2103266366 hasConceptScore W2103266366C122280245 @default.
- W2103266366 hasConceptScore W2103266366C12267149 @default.
- W2103266366 hasConceptScore W2103266366C153180895 @default.
- W2103266366 hasConceptScore W2103266366C154945302 @default.
- W2103266366 hasConceptScore W2103266366C181367576 @default.
- W2103266366 hasConceptScore W2103266366C182335926 @default.
- W2103266366 hasConceptScore W2103266366C27438332 @default.
- W2103266366 hasConceptScore W2103266366C33923547 @default.
- W2103266366 hasConceptScore W2103266366C41008148 @default.
- W2103266366 hasConceptScore W2103266366C52622490 @default.
- W2103266366 hasConceptScore W2103266366C69738355 @default.
- W2103266366 hasConceptScore W2103266366C74193536 @default.
- W2103266366 hasConceptScore W2103266366C774472 @default.
- W2103266366 hasConceptScore W2103266366C83665646 @default.
- W2103266366 hasIssue "4" @default.
- W2103266366 hasLocation W21032663661 @default.
- W2103266366 hasLocation W21032663662 @default.
- W2103266366 hasOpenAccess W2103266366 @default.
- W2103266366 hasPrimaryLocation W21032663661 @default.
- W2103266366 hasRelatedWork W1756633271 @default.
- W2103266366 hasRelatedWork W2095764581 @default.
- W2103266366 hasRelatedWork W2108806452 @default.
- W2103266366 hasRelatedWork W2117887974 @default.
- W2103266366 hasRelatedWork W2125244435 @default.
- W2103266366 hasRelatedWork W2129407254 @default.
- W2103266366 hasRelatedWork W2168277226 @default.
- W2103266366 hasRelatedWork W2375022942 @default.
- W2103266366 hasRelatedWork W2386228546 @default.
- W2103266366 hasRelatedWork W3033319502 @default.
- W2103266366 hasVolume "19" @default.
- W2103266366 isParatext "false" @default.
- W2103266366 isRetracted "false" @default.