Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103289699> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2103289699 endingPage "417" @default.
- W2103289699 startingPage "407" @default.
- W2103289699 abstract "Summary Time series of animal movement obtained from bio‐loggers are becoming widely used across all taxa. These data are nowadays of high quality, combining high resolution with precision, as the tags are able to collect for longer times and store larger quantities of data. Due to their nature, high‐frequency data sequences often pose non‐trivial problems in time series analysis: nonlinearity, non‐normality, non‐stationarity and long memory. These issues can be tackled by modelling the data sequence as a realization of a stochastic regime‐switching process. We suggest a novel Markov switching autoregressive model where the hidden Markov chain is non‐homogeneous, with time‐varying transition probabilities, whose dynamics depend on the dynamics of some contemporary categorical covariates. To illustrate the use of the method, we apply it to the depth profiles of four individuals of flapper skate ( Dipturus cf. intermedia ) in order to identify swimming behaviours. Individual time series were obtained from data storage tags that recorded pressure every two minutes. The environmental covariates used were lunar phase (a proxy for the spring‐neap tidal cycle), lunar cycle and diel cycle. For all individuals, two states (or regimes) were always selected (the autoregressive order was either three or four), representing different regimes of animal activity, that is state 1 for resting or horizontal swimming or slow vertical movement and state 2 for fast ascending and descending. The cycle of the four lunar phases was the only environmental covariate that explained the hidden state dynamics in all individuals, whereas lunar cycle was selected for two individuals and diel cycle for one only. The method is an efficient approach to fit one‐dimensional tag data using categorical environmental covariates, and to classify the observations into a small number of states representing individual behaviours of tagged individuals." @default.
- W2103289699 created "2016-06-24" @default.
- W2103289699 creator A5015438770 @default.
- W2103289699 creator A5076417112 @default.
- W2103289699 date "2015-11-11" @default.
- W2103289699 modified "2023-09-25" @default.
- W2103289699 title "Markov switching autoregressive models for interpreting vertical movement data with application to an endangered marine apex predator" @default.
- W2103289699 cites W1532983394 @default.
- W2103289699 cites W1600310449 @default.
- W2103289699 cites W1873257972 @default.
- W2103289699 cites W1971094148 @default.
- W2103289699 cites W1971718716 @default.
- W2103289699 cites W1985189842 @default.
- W2103289699 cites W1987401658 @default.
- W2103289699 cites W1996525588 @default.
- W2103289699 cites W2014426844 @default.
- W2103289699 cites W2015749074 @default.
- W2103289699 cites W2016655502 @default.
- W2103289699 cites W2026963084 @default.
- W2103289699 cites W2027445478 @default.
- W2103289699 cites W2034798911 @default.
- W2103289699 cites W2038885294 @default.
- W2103289699 cites W2052441401 @default.
- W2103289699 cites W2061207233 @default.
- W2103289699 cites W2064238346 @default.
- W2103289699 cites W2065522066 @default.
- W2103289699 cites W2068394775 @default.
- W2103289699 cites W2070457753 @default.
- W2103289699 cites W2073930432 @default.
- W2103289699 cites W2074812030 @default.
- W2103289699 cites W2081010167 @default.
- W2103289699 cites W2082813160 @default.
- W2103289699 cites W2091662045 @default.
- W2103289699 cites W2107800900 @default.
- W2103289699 cites W2120553757 @default.
- W2103289699 cites W2121091424 @default.
- W2103289699 cites W2133734682 @default.
- W2103289699 cites W2134061862 @default.
- W2103289699 cites W2134726709 @default.
- W2103289699 cites W2140356647 @default.
- W2103289699 cites W2146565992 @default.
- W2103289699 cites W2157417786 @default.
- W2103289699 cites W2344269177 @default.
- W2103289699 cites W3124955081 @default.
- W2103289699 cites W3125810650 @default.
- W2103289699 cites W4211177544 @default.
- W2103289699 doi "https://doi.org/10.1111/2041-210x.12494" @default.
- W2103289699 hasPublicationYear "2015" @default.
- W2103289699 type Work @default.
- W2103289699 sameAs 2103289699 @default.
- W2103289699 citedByCount "11" @default.
- W2103289699 countsByYear W21032896992016 @default.
- W2103289699 countsByYear W21032896992017 @default.
- W2103289699 countsByYear W21032896992020 @default.
- W2103289699 countsByYear W21032896992021 @default.
- W2103289699 countsByYear W21032896992022 @default.
- W2103289699 crossrefType "journal-article" @default.
- W2103289699 hasAuthorship W2103289699A5015438770 @default.
- W2103289699 hasAuthorship W2103289699A5076417112 @default.
- W2103289699 hasBestOaLocation W21032896991 @default.
- W2103289699 hasConcept C105795698 @default.
- W2103289699 hasConcept C149782125 @default.
- W2103289699 hasConcept C151406439 @default.
- W2103289699 hasConcept C154945302 @default.
- W2103289699 hasConcept C159877910 @default.
- W2103289699 hasConcept C23224414 @default.
- W2103289699 hasConcept C33923547 @default.
- W2103289699 hasConcept C41008148 @default.
- W2103289699 hasConcept C98763669 @default.
- W2103289699 hasConceptScore W2103289699C105795698 @default.
- W2103289699 hasConceptScore W2103289699C149782125 @default.
- W2103289699 hasConceptScore W2103289699C151406439 @default.
- W2103289699 hasConceptScore W2103289699C154945302 @default.
- W2103289699 hasConceptScore W2103289699C159877910 @default.
- W2103289699 hasConceptScore W2103289699C23224414 @default.
- W2103289699 hasConceptScore W2103289699C33923547 @default.
- W2103289699 hasConceptScore W2103289699C41008148 @default.
- W2103289699 hasConceptScore W2103289699C98763669 @default.
- W2103289699 hasFunder F4320312695 @default.
- W2103289699 hasIssue "4" @default.
- W2103289699 hasLocation W21032896991 @default.
- W2103289699 hasOpenAccess W2103289699 @default.
- W2103289699 hasPrimaryLocation W21032896991 @default.
- W2103289699 hasRelatedWork W2054867888 @default.
- W2103289699 hasRelatedWork W2068394775 @default.
- W2103289699 hasRelatedWork W2069236387 @default.
- W2103289699 hasRelatedWork W2077287522 @default.
- W2103289699 hasRelatedWork W2119088021 @default.
- W2103289699 hasRelatedWork W2121644679 @default.
- W2103289699 hasRelatedWork W2347283725 @default.
- W2103289699 hasRelatedWork W2546021431 @default.
- W2103289699 hasRelatedWork W2581127593 @default.
- W2103289699 hasRelatedWork W3194727970 @default.
- W2103289699 hasVolume "7" @default.
- W2103289699 isParatext "false" @default.
- W2103289699 isRetracted "false" @default.
- W2103289699 magId "2103289699" @default.
- W2103289699 workType "article" @default.