Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103365780> ?p ?o ?g. }
- W2103365780 abstract "In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM) was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA) system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into the GMA form. Thus, efficient methods for optimizing GMA systems have multifold appeal." @default.
- W2103365780 created "2016-06-24" @default.
- W2103365780 creator A5024866710 @default.
- W2103365780 creator A5063233199 @default.
- W2103365780 creator A5070879539 @default.
- W2103365780 creator A5081336679 @default.
- W2103365780 date "2007-09-26" @default.
- W2103365780 modified "2023-09-24" @default.
- W2103365780 title "Optimization of biotechnological systems through geometric programming" @default.
- W2103365780 cites W1496092928 @default.
- W2103365780 cites W1502529406 @default.
- W2103365780 cites W1535241806 @default.
- W2103365780 cites W1581582023 @default.
- W2103365780 cites W1966580332 @default.
- W2103365780 cites W1982258483 @default.
- W2103365780 cites W2000040887 @default.
- W2103365780 cites W2020241931 @default.
- W2103365780 cites W2022772618 @default.
- W2103365780 cites W2038210983 @default.
- W2103365780 cites W2044189879 @default.
- W2103365780 cites W2061030220 @default.
- W2103365780 cites W2062064467 @default.
- W2103365780 cites W2062245653 @default.
- W2103365780 cites W2079400503 @default.
- W2103365780 cites W2086490888 @default.
- W2103365780 cites W2091250743 @default.
- W2103365780 cites W2128714477 @default.
- W2103365780 cites W2128869726 @default.
- W2103365780 cites W2148687617 @default.
- W2103365780 cites W2894871027 @default.
- W2103365780 cites W4250589301 @default.
- W2103365780 doi "https://doi.org/10.1186/1742-4682-4-38" @default.
- W2103365780 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2231360" @default.
- W2103365780 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17897440" @default.
- W2103365780 hasPublicationYear "2007" @default.
- W2103365780 type Work @default.
- W2103365780 sameAs 2103365780 @default.
- W2103365780 citedByCount "38" @default.
- W2103365780 countsByYear W21033657802012 @default.
- W2103365780 countsByYear W21033657802013 @default.
- W2103365780 countsByYear W21033657802014 @default.
- W2103365780 countsByYear W21033657802015 @default.
- W2103365780 countsByYear W21033657802016 @default.
- W2103365780 countsByYear W21033657802017 @default.
- W2103365780 countsByYear W21033657802018 @default.
- W2103365780 countsByYear W21033657802019 @default.
- W2103365780 countsByYear W21033657802020 @default.
- W2103365780 countsByYear W21033657802021 @default.
- W2103365780 countsByYear W21033657802022 @default.
- W2103365780 crossrefType "journal-article" @default.
- W2103365780 hasAuthorship W2103365780A5024866710 @default.
- W2103365780 hasAuthorship W2103365780A5063233199 @default.
- W2103365780 hasAuthorship W2103365780A5070879539 @default.
- W2103365780 hasAuthorship W2103365780A5081336679 @default.
- W2103365780 hasBestOaLocation W21033657801 @default.
- W2103365780 hasConcept C11413529 @default.
- W2103365780 hasConcept C115527620 @default.
- W2103365780 hasConcept C119857082 @default.
- W2103365780 hasConcept C121332964 @default.
- W2103365780 hasConcept C126255220 @default.
- W2103365780 hasConcept C144133560 @default.
- W2103365780 hasConcept C152662350 @default.
- W2103365780 hasConcept C158622935 @default.
- W2103365780 hasConcept C162324750 @default.
- W2103365780 hasConcept C162853370 @default.
- W2103365780 hasConcept C187736073 @default.
- W2103365780 hasConcept C20729856 @default.
- W2103365780 hasConcept C2780451532 @default.
- W2103365780 hasConcept C33923547 @default.
- W2103365780 hasConcept C41008148 @default.
- W2103365780 hasConcept C41045048 @default.
- W2103365780 hasConcept C60644358 @default.
- W2103365780 hasConcept C62520636 @default.
- W2103365780 hasConcept C86251818 @default.
- W2103365780 hasConcept C86803240 @default.
- W2103365780 hasConceptScore W2103365780C11413529 @default.
- W2103365780 hasConceptScore W2103365780C115527620 @default.
- W2103365780 hasConceptScore W2103365780C119857082 @default.
- W2103365780 hasConceptScore W2103365780C121332964 @default.
- W2103365780 hasConceptScore W2103365780C126255220 @default.
- W2103365780 hasConceptScore W2103365780C144133560 @default.
- W2103365780 hasConceptScore W2103365780C152662350 @default.
- W2103365780 hasConceptScore W2103365780C158622935 @default.
- W2103365780 hasConceptScore W2103365780C162324750 @default.
- W2103365780 hasConceptScore W2103365780C162853370 @default.
- W2103365780 hasConceptScore W2103365780C187736073 @default.
- W2103365780 hasConceptScore W2103365780C20729856 @default.
- W2103365780 hasConceptScore W2103365780C2780451532 @default.
- W2103365780 hasConceptScore W2103365780C33923547 @default.
- W2103365780 hasConceptScore W2103365780C41008148 @default.
- W2103365780 hasConceptScore W2103365780C41045048 @default.
- W2103365780 hasConceptScore W2103365780C60644358 @default.
- W2103365780 hasConceptScore W2103365780C62520636 @default.
- W2103365780 hasConceptScore W2103365780C86251818 @default.
- W2103365780 hasConceptScore W2103365780C86803240 @default.
- W2103365780 hasIssue "1" @default.
- W2103365780 hasLocation W21033657801 @default.
- W2103365780 hasLocation W21033657802 @default.
- W2103365780 hasLocation W21033657803 @default.
- W2103365780 hasLocation W21033657804 @default.