Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103375459> ?p ?o ?g. }
- W2103375459 abstract "This paper presents a complete set of singularity-reduced boundary integral relations for isolated discontinuities embedded in three-dimensional infinite media. The development is carried out within a broad context that allows the treatment of a well-known class of smart media such as linear piezoelectric, linear piezomagnetic and linear piezoelectromagnetic materials. In addition, resulting boundary integral representations are applicable to general discontinuities of arbitrary geometry and possessing a general jump distribution. The latter aspect allows the treatment of two special kinds of discontinuities: dislocations and cracks. The most attractive feature of the current development is that all integral relations for field quantities such as state variables and their gradients, the body flux, and the generalized interaction energy produced by dislocations are expressed only in terms of line integrals over the dislocation loops and, for cracks, the key governing boundary integral equation is established in a symmetric weak form and contains only weakly singular kernels of . Results for the former case are fundamental and useful in the context of dislocation mechanics and modeling while the resulting weakly singular, weak form integral equation constitutes a basis for the development of a well-known numerical technique, called a symmetric Galerkin boundary element method (SGBEM), for analysis of cracked bodies. The weakly singular nature of such an integral equation allows low order interpolations to be used in the numerical approximation. The key ingredient for achieving such development of integral representations is the use of certain special decompositions in the derivative-transferring process via Stokes's theorem. Existence of such decompositions is ensured by a careful consideration of the singularity nature of the kernels, and a particular solution of the weakly singular functions involved is obtained by solving a system of partial differential equations via a method of Radon transforms. The final results, for general anisotropy, are given in a concise form in terms of an equatorial line integral that is suitable for numerical evaluation. As part of the verification, a numerical experiment is carried out for isolated crack problems via use of a weakly singular SGBEM and results exhibit only mild dependence on the mesh refinement and excellent agreement with existing analytical solutions." @default.
- W2103375459 created "2016-06-24" @default.
- W2103375459 creator A5037362878 @default.
- W2103375459 creator A5048231000 @default.
- W2103375459 date "2009-06-15" @default.
- W2103375459 modified "2023-09-22" @default.
- W2103375459 title "Regularized boundary integral representations for dislocations and cracks in smart media" @default.
- W2103375459 cites W1969555083 @default.
- W2103375459 cites W1975284389 @default.
- W2103375459 cites W1976613931 @default.
- W2103375459 cites W1979970772 @default.
- W2103375459 cites W1980161171 @default.
- W2103375459 cites W1981488886 @default.
- W2103375459 cites W1987968527 @default.
- W2103375459 cites W1989469876 @default.
- W2103375459 cites W1999961615 @default.
- W2103375459 cites W2010161839 @default.
- W2103375459 cites W2016383214 @default.
- W2103375459 cites W2016773886 @default.
- W2103375459 cites W2021431019 @default.
- W2103375459 cites W2028379299 @default.
- W2103375459 cites W2034690352 @default.
- W2103375459 cites W2035452579 @default.
- W2103375459 cites W2036074210 @default.
- W2103375459 cites W2037361571 @default.
- W2103375459 cites W2049139599 @default.
- W2103375459 cites W2053331541 @default.
- W2103375459 cites W2054643942 @default.
- W2103375459 cites W2054942659 @default.
- W2103375459 cites W2056638146 @default.
- W2103375459 cites W2064682868 @default.
- W2103375459 cites W2068376580 @default.
- W2103375459 cites W2079043578 @default.
- W2103375459 cites W2088666109 @default.
- W2103375459 cites W2093217019 @default.
- W2103375459 cites W2094978914 @default.
- W2103375459 cites W2095987959 @default.
- W2103375459 cites W2101822493 @default.
- W2103375459 cites W2109281552 @default.
- W2103375459 cites W2152069815 @default.
- W2103375459 cites W2163749611 @default.
- W2103375459 cites W2164457436 @default.
- W2103375459 cites W3392133 @default.
- W2103375459 cites W4229901926 @default.
- W2103375459 cites W4237638773 @default.
- W2103375459 cites W4239729298 @default.
- W2103375459 cites W2024605128 @default.
- W2103375459 cites W2144197234 @default.
- W2103375459 doi "https://doi.org/10.1088/0964-1726/18/7/074010" @default.
- W2103375459 hasPublicationYear "2009" @default.
- W2103375459 type Work @default.
- W2103375459 sameAs 2103375459 @default.
- W2103375459 citedByCount "8" @default.
- W2103375459 countsByYear W21033754592013 @default.
- W2103375459 countsByYear W21033754592015 @default.
- W2103375459 countsByYear W21033754592016 @default.
- W2103375459 countsByYear W21033754592019 @default.
- W2103375459 crossrefType "journal-article" @default.
- W2103375459 hasAuthorship W2103375459A5037362878 @default.
- W2103375459 hasAuthorship W2103375459A5048231000 @default.
- W2103375459 hasConcept C121332964 @default.
- W2103375459 hasConcept C134306372 @default.
- W2103375459 hasConcept C135628077 @default.
- W2103375459 hasConcept C151730666 @default.
- W2103375459 hasConcept C15627037 @default.
- W2103375459 hasConcept C16171025 @default.
- W2103375459 hasConcept C2524010 @default.
- W2103375459 hasConcept C27016315 @default.
- W2103375459 hasConcept C2779343474 @default.
- W2103375459 hasConcept C33923547 @default.
- W2103375459 hasConcept C3537527 @default.
- W2103375459 hasConcept C51577431 @default.
- W2103375459 hasConcept C62354387 @default.
- W2103375459 hasConcept C63632240 @default.
- W2103375459 hasConcept C75023562 @default.
- W2103375459 hasConcept C86803240 @default.
- W2103375459 hasConcept C92571104 @default.
- W2103375459 hasConcept C97355855 @default.
- W2103375459 hasConceptScore W2103375459C121332964 @default.
- W2103375459 hasConceptScore W2103375459C134306372 @default.
- W2103375459 hasConceptScore W2103375459C135628077 @default.
- W2103375459 hasConceptScore W2103375459C151730666 @default.
- W2103375459 hasConceptScore W2103375459C15627037 @default.
- W2103375459 hasConceptScore W2103375459C16171025 @default.
- W2103375459 hasConceptScore W2103375459C2524010 @default.
- W2103375459 hasConceptScore W2103375459C27016315 @default.
- W2103375459 hasConceptScore W2103375459C2779343474 @default.
- W2103375459 hasConceptScore W2103375459C33923547 @default.
- W2103375459 hasConceptScore W2103375459C3537527 @default.
- W2103375459 hasConceptScore W2103375459C51577431 @default.
- W2103375459 hasConceptScore W2103375459C62354387 @default.
- W2103375459 hasConceptScore W2103375459C63632240 @default.
- W2103375459 hasConceptScore W2103375459C75023562 @default.
- W2103375459 hasConceptScore W2103375459C86803240 @default.
- W2103375459 hasConceptScore W2103375459C92571104 @default.
- W2103375459 hasConceptScore W2103375459C97355855 @default.
- W2103375459 hasLocation W21033754591 @default.
- W2103375459 hasOpenAccess W2103375459 @default.
- W2103375459 hasPrimaryLocation W21033754591 @default.
- W2103375459 hasRelatedWork W1514877824 @default.