Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103540160> ?p ?o ?g. }
- W2103540160 endingPage "1138" @default.
- W2103540160 startingPage "1125" @default.
- W2103540160 abstract "The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package." @default.
- W2103540160 created "2016-06-24" @default.
- W2103540160 creator A5047298451 @default.
- W2103540160 date "2009-06-01" @default.
- W2103540160 modified "2023-10-18" @default.
- W2103540160 title "Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey)" @default.
- W2103540160 cites W1968620645 @default.
- W2103540160 cites W1977137874 @default.
- W2103540160 cites W1979408254 @default.
- W2103540160 cites W1980725494 @default.
- W2103540160 cites W1981646498 @default.
- W2103540160 cites W1985311430 @default.
- W2103540160 cites W1988988493 @default.
- W2103540160 cites W1996385777 @default.
- W2103540160 cites W2000462249 @default.
- W2103540160 cites W2000995923 @default.
- W2103540160 cites W2001293281 @default.
- W2103540160 cites W2002139005 @default.
- W2103540160 cites W2010121494 @default.
- W2103540160 cites W2012853691 @default.
- W2103540160 cites W2020062384 @default.
- W2103540160 cites W2020716065 @default.
- W2103540160 cites W2022205731 @default.
- W2103540160 cites W2027387749 @default.
- W2103540160 cites W2038248190 @default.
- W2103540160 cites W2042229599 @default.
- W2103540160 cites W2049084906 @default.
- W2103540160 cites W2055228537 @default.
- W2103540160 cites W2056214587 @default.
- W2103540160 cites W2066329766 @default.
- W2103540160 cites W2068607808 @default.
- W2103540160 cites W2075993644 @default.
- W2103540160 cites W2089870906 @default.
- W2103540160 cites W2090105324 @default.
- W2103540160 cites W2093650457 @default.
- W2103540160 cites W2101121500 @default.
- W2103540160 cites W2121394390 @default.
- W2103540160 cites W2138988968 @default.
- W2103540160 cites W2143296882 @default.
- W2103540160 cites W2146357111 @default.
- W2103540160 cites W2244333575 @default.
- W2103540160 cites W2333062412 @default.
- W2103540160 cites W2333469642 @default.
- W2103540160 cites W319686199 @default.
- W2103540160 cites W4240793115 @default.
- W2103540160 cites W573624750 @default.
- W2103540160 doi "https://doi.org/10.1016/j.cageo.2008.08.007" @default.
- W2103540160 hasPublicationYear "2009" @default.
- W2103540160 type Work @default.
- W2103540160 sameAs 2103540160 @default.
- W2103540160 citedByCount "718" @default.
- W2103540160 countsByYear W21035401602012 @default.
- W2103540160 countsByYear W21035401602013 @default.
- W2103540160 countsByYear W21035401602014 @default.
- W2103540160 countsByYear W21035401602015 @default.
- W2103540160 countsByYear W21035401602016 @default.
- W2103540160 countsByYear W21035401602017 @default.
- W2103540160 countsByYear W21035401602018 @default.
- W2103540160 countsByYear W21035401602019 @default.
- W2103540160 countsByYear W21035401602020 @default.
- W2103540160 countsByYear W21035401602021 @default.
- W2103540160 countsByYear W21035401602022 @default.
- W2103540160 countsByYear W21035401602023 @default.
- W2103540160 crossrefType "journal-article" @default.
- W2103540160 hasAuthorship W2103540160A5047298451 @default.
- W2103540160 hasConcept C105795698 @default.
- W2103540160 hasConcept C124101348 @default.
- W2103540160 hasConcept C127313418 @default.
- W2103540160 hasConcept C151956035 @default.
- W2103540160 hasConcept C154945302 @default.
- W2103540160 hasConcept C181843262 @default.
- W2103540160 hasConcept C186295008 @default.
- W2103540160 hasConcept C187320778 @default.
- W2103540160 hasConcept C2524010 @default.
- W2103540160 hasConcept C2776898743 @default.
- W2103540160 hasConcept C33923547 @default.
- W2103540160 hasConcept C37054046 @default.
- W2103540160 hasConcept C41008148 @default.
- W2103540160 hasConcept C50644808 @default.
- W2103540160 hasConcept C62649853 @default.
- W2103540160 hasConceptScore W2103540160C105795698 @default.
- W2103540160 hasConceptScore W2103540160C124101348 @default.
- W2103540160 hasConceptScore W2103540160C127313418 @default.
- W2103540160 hasConceptScore W2103540160C151956035 @default.
- W2103540160 hasConceptScore W2103540160C154945302 @default.
- W2103540160 hasConceptScore W2103540160C181843262 @default.
- W2103540160 hasConceptScore W2103540160C186295008 @default.
- W2103540160 hasConceptScore W2103540160C187320778 @default.
- W2103540160 hasConceptScore W2103540160C2524010 @default.
- W2103540160 hasConceptScore W2103540160C2776898743 @default.
- W2103540160 hasConceptScore W2103540160C33923547 @default.
- W2103540160 hasConceptScore W2103540160C37054046 @default.
- W2103540160 hasConceptScore W2103540160C41008148 @default.
- W2103540160 hasConceptScore W2103540160C50644808 @default.
- W2103540160 hasConceptScore W2103540160C62649853 @default.
- W2103540160 hasIssue "6" @default.
- W2103540160 hasLocation W21035401601 @default.
- W2103540160 hasOpenAccess W2103540160 @default.