Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103540631> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2103540631 endingPage "602" @default.
- W2103540631 startingPage "593" @default.
- W2103540631 abstract "The paper presents dynamic self-organizing neural networks with one-dimensional neighbourhood that can be efficiently applied to complex, multidimensional cluster-analysis problems. The proposed networks in the course of learning are able to disconnect their neuron chains into sub-chains, to reconnect some of the sub-chains again, and to dynamically adjust the overall number of neurons in the system; all of that – to fit in the best way the structures “encoded” in data sets. The operation of the proposed technique has been illustrated by means of three synthetic data sets, and then, this technique has been tested with the use of two real-life, complex and multidimensional data sets (Optical Recognition of Handwritten Digits Database and Image Segmentation Database of Statlog Databases) available from the ftp-server of the University of California at Irvine (ftp.ics.uci.edu)." @default.
- W2103540631 created "2016-06-24" @default.
- W2103540631 creator A5065962325 @default.
- W2103540631 creator A5074134615 @default.
- W2103540631 date "2006-01-01" @default.
- W2103540631 modified "2023-09-23" @default.
- W2103540631 title "Cluster Analysis Via Dynamic Self-organizing Neural Networks" @default.
- W2103540631 cites W1559928038 @default.
- W2103540631 cites W1603207581 @default.
- W2103540631 doi "https://doi.org/10.1007/11785231_62" @default.
- W2103540631 hasPublicationYear "2006" @default.
- W2103540631 type Work @default.
- W2103540631 sameAs 2103540631 @default.
- W2103540631 citedByCount "12" @default.
- W2103540631 countsByYear W21035406312014 @default.
- W2103540631 countsByYear W21035406312015 @default.
- W2103540631 countsByYear W21035406312016 @default.
- W2103540631 countsByYear W21035406312017 @default.
- W2103540631 countsByYear W21035406312018 @default.
- W2103540631 countsByYear W21035406312019 @default.
- W2103540631 crossrefType "book-chapter" @default.
- W2103540631 hasAuthorship W2103540631A5065962325 @default.
- W2103540631 hasAuthorship W2103540631A5074134615 @default.
- W2103540631 hasConcept C124101348 @default.
- W2103540631 hasConcept C154945302 @default.
- W2103540631 hasConcept C164866538 @default.
- W2103540631 hasConcept C31258907 @default.
- W2103540631 hasConcept C41008148 @default.
- W2103540631 hasConcept C50644808 @default.
- W2103540631 hasConceptScore W2103540631C124101348 @default.
- W2103540631 hasConceptScore W2103540631C154945302 @default.
- W2103540631 hasConceptScore W2103540631C164866538 @default.
- W2103540631 hasConceptScore W2103540631C31258907 @default.
- W2103540631 hasConceptScore W2103540631C41008148 @default.
- W2103540631 hasConceptScore W2103540631C50644808 @default.
- W2103540631 hasLocation W21035406311 @default.
- W2103540631 hasOpenAccess W2103540631 @default.
- W2103540631 hasPrimaryLocation W21035406311 @default.
- W2103540631 hasRelatedWork W2348097614 @default.
- W2103540631 hasRelatedWork W2358471166 @default.
- W2103540631 hasRelatedWork W2366792704 @default.
- W2103540631 hasRelatedWork W2380878102 @default.
- W2103540631 hasRelatedWork W2386387936 @default.
- W2103540631 hasRelatedWork W2604198989 @default.
- W2103540631 hasRelatedWork W3001020386 @default.
- W2103540631 hasRelatedWork W3107474891 @default.
- W2103540631 hasRelatedWork W3203102083 @default.
- W2103540631 hasRelatedWork W1629725936 @default.
- W2103540631 isParatext "false" @default.
- W2103540631 isRetracted "false" @default.
- W2103540631 magId "2103540631" @default.
- W2103540631 workType "book-chapter" @default.