Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103549064> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2103549064 endingPage "821" @default.
- W2103549064 startingPage "820" @default.
- W2103549064 abstract "HomeStrokeVol. 34, No. 3Early Major Ischemic Changes on Computed Tomography Should Preclude Use of Tissue Plasminogen Activator Free AccessArticle CommentaryPDF/EPUBAboutView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toFree AccessArticle CommentaryPDF/EPUBEarly Major Ischemic Changes on Computed Tomography Should Preclude Use of Tissue Plasminogen Activator Rüdiger von Kummer, MD Rüdiger von KummerRüdiger von Kummer From the Department of Neuroradiology, University of Technology, Dresden, Germany. Search for more papers by this author Originally published20 Feb 2003https://doi.org/10.1161/01.STR.0000059430.55671.56Stroke. 2003;34:820–821Other version(s) of this articleYou are viewing the most recent version of this article. Previous versions: February 20, 2003: Previous Version 1 The rationale of tissue plasminogen activator (tPA) treatment is the restoration of blood supply to ischemic brain areas by clot lysis and subsequent arterial recanalization. With view to the high vulnerability of brain tissue, early restoration of blood supply will have a better chance of regaining neurological function than delayed restoration. Brain tissue survival is, however, clearly not guaranteed for 3 hours, the currently accepted time window for thrombolysis, if cerebral blood flow falls below 10 mL per 100 g × min. Under such conditions, it survives for not more than 15 to 30 minutes.1 Time is only one condition among others for the success of thrombolysis. This treatment will work if the clot is dissolvable by tPA, (containing fibrin, not calcified, small), if reperfusion is accelerated compared with the spontaneous course, and if reperfusion of the ischemic brain tissue will result in recovery of neurological function. Fortunately, stroke can have a beneficial spontaneous course, and no treatment is necessary. Conversely, stroke in others may be caused by conditions that cannot be treated with tPA. These conditions are arterial wall dissection or inflammation, arteriosclerotic stenosis, and long-standing extracranial carotid occlusion in combination with a drop in arterial blood pressure. Again, time may play a crucial role: arterial recanalization by 0.9 mg/kg tPA may be too slow and too late. Under unfortunate circumstances (eg, embolic occlusion of the distal internal carotid artery), the major portion of the affected arterial territory is already dead, when tPA treatment is initiated and when the agent achieves recanalization. Reperfusion of severely injured brain tissue may then further enhance ischemic edema.2Methods are available that can more specifically identify the patients who may benefit from treatment with tPA than the often unreliable assessment-of-stroke-onset method. Computed tomography (CT) detects brain tissue water content and thus ischemic edema in stroke patients. Edematous ischemic brain tissue means irreversible injury from severe hypoperfusion.3 It is logical, then, to hypothesize that hypoattenuating brain tissue on CT represents irreversible ischemic injury that may be prone to further water uptake or hemorrhagic transformation in case of reperfusion. The risk from irreversibly injured brain tissue is associated with its extent. A patient may benefit from the recanalization of the middle cerebral artery (MCA) trunk, if only the basal ganglia are irreversibly injured, but the remaining portions of the MCA territory are still viable. This patient will not benefit from tPA treatment, if the entire MCA territory or major portions are already irreversibly injured when treatment is initiated irrespective of the time point.Other CT findings such as brain tissue swelling or hyperdense segments of arteries indicating occlusion are not closely associated with brain tissue damage. From a pathophysiological point of view, it makes no sense to mix these findings with tissue hypoattenuation, then measure the extent of this mixture of early “CT changes” or “CT signs” and study whether the extent is associated with the response to tPA treatment.4The hypothesis that the extent of hypoattenuating ischemic brain tissue is associated with poor prognosis and lack of benefit from tPA was first used for a careful selection of patients in ECASS and is now supported by clinical evidence: patients with MCA trunk occlusions and hypoattenuation of more than one half of the MCA territory had a mortality of 85%.5 Patients with hypoattenuating brain tissue in more than one third of the MCA territory did not benefit from tPA in ECASS I.6 In ECASS II, the extent of hypoattenuating brain tissue on baseline CT was identified as an independent risk factor for parenchymal hematoma.7 The quantitative grading of early CT findings in tPA treated patients showed a threshold beyond which the clinical outcome of patients was considerably impaired.8 A study of 1205 tPA-treated stroke patients identified “early ischemic CT changes, in particular if exceeding one third of the MCA territory” as an independent risk factor for symptomatic brain hemorrhage.9 In a recent analysis with re-evaluation of CT scans by a single observer, the risk for symptomatic hemorrhage was odds ratio (OR, 95% CI)=2.9 (0.3 to 32.4) in patients with hypodensity in >33% of the MCA territory and OR=1.5 (0.3 to 7.2) in patients with hypodensity in ≤33% of the MCA compared with patients with normal early CT.4 These data demonstrate a low statistical power because only a few patients with hypodensity were identified. The CT reader in this study had a sensitivity of only 31% for early ischemic changes in contrast to a sensitivity of 75% in a comparable study.8In summary, based on pathophysiological considerations and increasing evidence from clinical trials, “early major ischemic changes on CT” should preclude the use of tPA. Patients with ischemic edema as detected by CT as hypoattenuating brain tissue in the major portion of an arterial territory, or presenting >33% of the MCA territory, or >100 mL, or an ASPECTS <8, should not be treated with tPA, because a benefit of this treatment is not proven for these patients.Section Editors: Geoffrey A. Donnan, MD, FRACP and Stephen M. Davis, MD, FRACPThe opinions expressed in this editorial are not necessarily those of the editors or of the American Stroke Association.FootnotesCorrespondence to Rüdiger von Kummer, MD, Technische Universität, Department of Neuroradiology, Fetscherstr 74, Dresden D-01307, Germany. E-mail [email protected] References 1 Heiss W, Rosner G. Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol. 1983; 14: 294–301.CrossrefMedlineGoogle Scholar2 Ito U, Ohno K, Nakamura R, Suganuma F, Inaba Y. Brain edema during ischemia and after restoration of blood flow: measurement of water, sodium, potassium content and plasma protein permeability. Stroke. 1979; 10: 542–547.CrossrefMedlineGoogle Scholar3 von Kummer R, Bourquain H, Bastianello S, Bozzao L, Manelfe C, Meier D, Hacke W. Early prediction of irreversible brain damage after ischemic stroke by computed tomography. Radiology. 2001; 219: 95–100.CrossrefMedlineGoogle Scholar4 Patel S, Levine S, Tilley B, Grotta J, Lu M, Frankel M, Haley E, Brott T, Broderick J, Horowitz S, et al. Lack of clinical significance of early ischemic changes on computed tomography in acute stroke. JAMA. 2001; 286: 2830–2838.CrossrefMedlineGoogle Scholar5 von Kummer R, Meyding-Lamadé U, Forsting M, Rosin L, Rieke K, Hacke W, Sartor K. Sensitivity and prognostic value of early computed tomography in middle cerebral artery trunk occlusion. AJNR Am J Neuroradiol. 1994; 15: 9–15.MedlineGoogle Scholar6 von Kummer R, Allen K, Holle R, Bozzao L, Bastianello S, Manelfe C, Bluhmki E, Ringleb P, Meier D, Hacke W. Acute stroke: usefulness of early CT findings before thrombolytic therapy. Radiology. 1997; 205: 327–333.CrossrefMedlineGoogle Scholar7 Larrue V, von Kummer R, Müller A, Bluhmki E. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke. 2001; 32: 438–441.CrossrefMedlineGoogle Scholar8 Barber P, Demchuk A, Zhang J, Buchan A. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet. 2000; 355: 1670–1674.CrossrefMedlineGoogle Scholar9 Tanne D, Kasner S, Demchuk A, Koren-Morag N, Hanson S, Grond M, Levine S. Markers of increased risk of intracerebral hemorrhage after intravenous recombinant tissue plasminogen activator therapy for acute ischemic stroke in clinical practice. Circulation. 2002; 105: 1679–1685.LinkGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetailsCited By Disharoon D, Trewyn B, Herson P, Marr D and Neeves K (2021) Breaking the fibrinolytic speed limit with microwheel co‐delivery of tissue plasminogen activator and plasminogen, Journal of Thrombosis and Haemostasis, 10.1111/jth.15617, 20:2, (486-497), Online publication date: 1-Feb-2022. Berge E and Sandercock P (2019) Specific treatment of acute ischemic stroke Warlow's Stroke, 10.1002/9781118492390.ch13, (587-656) Disharoon D, Marr D and Neeves K (2019) Engineered microparticles and nanoparticles for fibrinolysis, Journal of Thrombosis and Haemostasis, 10.1111/jth.14637, 17:12, (2004-2015), Online publication date: 1-Dec-2019. Shon S, Heo S, Kim B, Choi H, Kwon Y, Yi S, Lee J, Kim Y, Kim H, Koh S and Chang D (2016) Predictors of Hemorrhage Volume after Intravenous Thrombolysis, Journal of Stroke and Cerebrovascular Diseases, 10.1016/j.jstrokecerebrovasdis.2016.06.035, 25:10, (2543-2548), Online publication date: 1-Oct-2016. Donahue J and Wintermark M (2015) Perfusion CT and acute stroke imaging: Foundations, applications, and literature review, Journal of Neuroradiology, 10.1016/j.neurad.2014.11.003, 42:1, (21-29), Online publication date: 1-Feb-2015. Asuzu D, Nyström K, Amin H, Schindler J, Wira C, Greer D, Chi N, Halliday J and Sheth K (2015) Cohort-Based Identification of Predictors of Symptomatic Intracerebral Hemorrhage After IV Thrombolysis, Neurocritical Care, 10.1007/s12028-015-0121-1, 23:3, (394-400), Online publication date: 1-Dec-2015. Mainali S, Wahba M and Elijovich L (2014) Detection of Early Ischemic Changes in Noncontrast CT Head Improved with “Stroke Windows”, ISRN Neuroscience, 10.1155/2014/654980, 2014, (1-4), Online publication date: 9-Mar-2014. Roveri L, La Gioia S, Ghidinelli C, Anzalone N, De Filippis C and Comi G (2013) Wake-up Stroke Within 3 Hours of Symptom Awareness: Imaging and Clinical Features Compared to Standard Recombinant Tissue Plasminogen Activator Treated Stroke, Journal of Stroke and Cerebrovascular Diseases, 10.1016/j.jstrokecerebrovasdis.2011.10.003, 22:6, (703-708), Online publication date: 1-Aug-2013. Konstas A, Wintermark M and Lev M (2011) CT Perfusion Imaging in Acute Stroke, Neuroimaging Clinics of North America, 10.1016/j.nic.2011.01.008, 21:2, (215-238), Online publication date: 1-May-2011. Konstas A, González R and Lev M (2011) CT Perfusion (CTP) Acute Ischemic Stroke, 10.1007/978-3-642-12751-9_5, (83-121), . Hopyan J, Ciarallo A, Dowlatshahi D, Howard P, John V, Yeung R, Zhang L, Kim J, MacFarlane G, Lee T and Aviv R (2010) Certainty of Stroke Diagnosis: Incremental Benefit with CT Perfusion over Noncontrast CT and CT Angiography, Radiology, 10.1148/radiol.09091021, 255:1, (142-153), Online publication date: 1-Apr-2010. Butcher K and Emery D (2014) Acute Stroke Imaging Part I: Fundamentals, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, 10.1017/S0317167100009598, 37:1, (4-16), Online publication date: 1-Jan-2010. Birns J and Kalra L (2009) Thrombolytic therapy for stroke, Therapy, 10.2217/thy.09.41, 6:5, (733-745), Online publication date: 1-Sep-2009. MORITA N, HARADA M, UNO M, MATSUBARA S, NAGAHIRO S and NISHITANI H (2009) Evaluation of Initial Diffusion-weighted Image Findings in Acute Stroke Patients using a Semiquantitative Score, Magnetic Resonance in Medical Sciences, 10.2463/mrms.8.47, 8:2, (47-53), . Albers G, Amarenco P, Easton J, Sacco R and Teal P (2008) Antithrombotic and Thrombolytic Therapy for Ischemic Stroke, Chest, 10.1378/chest.08-0720, 133:6, (630S-669S), Online publication date: 1-Jun-2008. Lee J, Kim S, Lee M, Park S and Lee S (2008) Prediction of clinical outcome with baseline and 24-hour perfusion CT in acute middle cerebral artery territory ischemic stroke treated with intravenous recanalization therapy, Neuroradiology, 10.1007/s00234-007-0358-2, 50:5, (391-396), Online publication date: 1-May-2008. Shetty S and Lev M (2008) MDCT Perfusion in Acute Stroke MDCT, 10.1007/978-88-470-0832-8_23, (295-309), . Butcher K, Lee S, Parsons M, Allport L, Fink J, Tress B, Donnan G and Davis S (2007) Differential Prognosis of Isolated Cortical Swelling and Hypoattenuation on CT in Acute Stroke, Stroke, 38:3, (941-947), Online publication date: 1-Mar-2007.Muir K, Baird-Gunning J, Walker L, Baird T, McCormick M and Coutts S (2007) Can the Ischemic Penumbra Be Identified on Noncontrast CT of Acute Stroke?, Stroke, 38:9, (2485-2490), Online publication date: 1-Sep-2007.Dzialowski I, Hill M, Coutts S, Demchuk A, Kent D, Wunderlich O and von Kummer R (2006) Extent of Early Ischemic Changes on Computed Tomography (CT) Before Thrombolysis, Stroke, 37:4, (973-978), Online publication date: 1-Apr-2006. Shetty S and Lev M CT Perfusion (CTP) Acute Ischemic Stroke, 10.1007/3-540-30810-5_5, (87-113) Shetty S and Lev M MDCT Perfusion in Acute Stroke MDCT:A Practical Approach, 10.1007/88-470-0413-6_14, (167-181) Hirano T, Yonehara T, Inatomi Y, Hashimoto Y and Uchino M (2005) Presence of Early Ischemic Changes on Computed Tomography Depends on Severity and the Duration of Hypoperfusion, Stroke, 36:12, (2601-2608), Online publication date: 1-Dec-2005. Rowley H (2005) Extending the Time Window for Thrombolysis: Evidence from Acute Stroke Trials, Neuroimaging Clinics of North America, 10.1016/j.nic.2005.08.002, 15:3, (575-587), Online publication date: 1-Aug-2005. Shetty S and Lev M (2005) CT Perfusion in Acute Stroke*, Seminars in Ultrasound, CT and MRI, 10.1053/j.sult.2005.09.001, 26:6, (404-421), Online publication date: 1-Dec-2005. Shetty S and Lev M (2005) CT Perfusion in Acute Stroke, Neuroimaging Clinics of North America, 10.1016/j.nic.2005.08.004, 15:3, (481-501), Online publication date: 1-Aug-2005. Na D, Kim E, Ryoo J, Lee K, Roh H, Kim S, Song I and Chang K (2005) CT Sign of Brain Swelling without Concomitant Parenchymal Hypoattenuation: Comparison with Diffusion- and Perfusion-weighted MR Imaging, Radiology, 10.1148/radiol.2353040571, 235:3, (992-998), Online publication date: 1-Jun-2005. Guadagno J, Donnan G, Markus R, Gillard J and Baron J (2004) Imaging the ischaemic penumbra, Current Opinion in Neurology, 10.1097/00019052-200402000-00011, 17:1, (61-67), Online publication date: 1-Feb-2004. Albers G, Amarenco P, Easton J, Sacco R and Teal P (2004) Antithrombotic and Thrombolytic Therapy for Ischemic Stroke, Chest, 10.1378/chest.126.3_suppl.483S, 126:3, (483S-512S), Online publication date: 1-Sep-2004. Grotta J (2003) NIHSS/EIC Mismatch Explains the > 1/3 MCA Conundrum, Stroke, 34:9, (e148-e149), Online publication date: 1-Sep-2003. March 2003Vol 34, Issue 3 Advertisement Article InformationMetrics https://doi.org/10.1161/01.STR.0000059430.55671.56PMID: 12624316 Originally publishedFebruary 20, 2003 Keywordsbrain ischemiacomputed tomographytissue plasminogen activatorPDF download Advertisement" @default.
- W2103549064 created "2016-06-24" @default.
- W2103549064 creator A5075245949 @default.
- W2103549064 date "2003-03-01" @default.
- W2103549064 modified "2023-09-26" @default.
- W2103549064 title "Early Major Ischemic Changes on Computed Tomography Should Preclude Use of Tissue Plasminogen Activator" @default.
- W2103549064 cites W1996293469 @default.
- W2103549064 cites W2020303089 @default.
- W2103549064 cites W2046731614 @default.
- W2103549064 cites W2122794709 @default.
- W2103549064 cites W2146631984 @default.
- W2103549064 cites W2148656951 @default.
- W2103549064 doi "https://doi.org/10.1161/01.str.0000059430.55671.56" @default.
- W2103549064 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12624316" @default.
- W2103549064 hasPublicationYear "2003" @default.
- W2103549064 type Work @default.
- W2103549064 sameAs 2103549064 @default.
- W2103549064 citedByCount "49" @default.
- W2103549064 countsByYear W21035490642012 @default.
- W2103549064 countsByYear W21035490642013 @default.
- W2103549064 countsByYear W21035490642014 @default.
- W2103549064 countsByYear W21035490642015 @default.
- W2103549064 countsByYear W21035490642016 @default.
- W2103549064 countsByYear W21035490642019 @default.
- W2103549064 countsByYear W21035490642021 @default.
- W2103549064 countsByYear W21035490642022 @default.
- W2103549064 countsByYear W21035490642023 @default.
- W2103549064 crossrefType "journal-article" @default.
- W2103549064 hasAuthorship W2103549064A5075245949 @default.
- W2103549064 hasBestOaLocation W21035490641 @default.
- W2103549064 hasConcept C126322002 @default.
- W2103549064 hasConcept C126838900 @default.
- W2103549064 hasConcept C163716698 @default.
- W2103549064 hasConcept C164705383 @default.
- W2103549064 hasConcept C2776572282 @default.
- W2103549064 hasConcept C2778820722 @default.
- W2103549064 hasConcept C2779581417 @default.
- W2103549064 hasConcept C2779679481 @default.
- W2103549064 hasConcept C3020199598 @default.
- W2103549064 hasConcept C500558357 @default.
- W2103549064 hasConcept C541997718 @default.
- W2103549064 hasConcept C544519230 @default.
- W2103549064 hasConcept C71924100 @default.
- W2103549064 hasConceptScore W2103549064C126322002 @default.
- W2103549064 hasConceptScore W2103549064C126838900 @default.
- W2103549064 hasConceptScore W2103549064C163716698 @default.
- W2103549064 hasConceptScore W2103549064C164705383 @default.
- W2103549064 hasConceptScore W2103549064C2776572282 @default.
- W2103549064 hasConceptScore W2103549064C2778820722 @default.
- W2103549064 hasConceptScore W2103549064C2779581417 @default.
- W2103549064 hasConceptScore W2103549064C2779679481 @default.
- W2103549064 hasConceptScore W2103549064C3020199598 @default.
- W2103549064 hasConceptScore W2103549064C500558357 @default.
- W2103549064 hasConceptScore W2103549064C541997718 @default.
- W2103549064 hasConceptScore W2103549064C544519230 @default.
- W2103549064 hasConceptScore W2103549064C71924100 @default.
- W2103549064 hasIssue "3" @default.
- W2103549064 hasLocation W21035490641 @default.
- W2103549064 hasLocation W21035490642 @default.
- W2103549064 hasOpenAccess W2103549064 @default.
- W2103549064 hasPrimaryLocation W21035490641 @default.
- W2103549064 hasRelatedWork W1023928724 @default.
- W2103549064 hasRelatedWork W1971083978 @default.
- W2103549064 hasRelatedWork W2079266769 @default.
- W2103549064 hasRelatedWork W2273823659 @default.
- W2103549064 hasRelatedWork W2327082266 @default.
- W2103549064 hasRelatedWork W2376877162 @default.
- W2103549064 hasRelatedWork W2464676154 @default.
- W2103549064 hasRelatedWork W2902996224 @default.
- W2103549064 hasRelatedWork W3030131813 @default.
- W2103549064 hasRelatedWork W3032036961 @default.
- W2103549064 hasVolume "34" @default.
- W2103549064 isParatext "false" @default.
- W2103549064 isRetracted "false" @default.
- W2103549064 magId "2103549064" @default.
- W2103549064 workType "article" @default.