Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103558364> ?p ?o ?g. }
- W2103558364 endingPage "1442" @default.
- W2103558364 startingPage "1433" @default.
- W2103558364 abstract "The development of the vertebrate limb has long served as a paradigm for understanding the fundamental processes by which an undifferentiated field of cells gains spatial pattern and undergoes coordinated differentiation to produce the exquisitely complex structures that characterize our functional anatomy. The limb bud emerges from the flank as a mound of seemingly homogeneous mesenchymal cells within an ectodermal jacket. Yet within days this mass of cells gives rise to skeletal elements, muscles, and connective tissues organized in the form of a mature limb. Looking at one’s own arm or leg, this organization can immediately be appreciated along three different axes: The back of the hand (dorsal) is different from the palm (ventral), the thumb (anterior) is distinct from the little finger (posterior), and the upper arm (proximal) is different from the lower arm and the hand (distal). The process by which differences along the proximodistal axis are established has been particularly controversial, with competing models proposed to explain the outcome of both classical and genetic manipulations. However, if one examines the two major models that have been previously proposed, neither of them is tenable in the context of our current knowledge of gene activity in the developing limb. Proximodistal patterning therefore needs to be placed into a new framework based directly on the molecular data. The first key insight into the process of limb patterning came almost 60 yr ago when John Saunders discovered that the apical ectodermal ridge (AER), a thickened ridge of ectodermal cells that runs along the anterior– posterior axis of the distal limb bud (equivalent to a ridge running along the distal edge of the hand from which the finger tips will eventually form) is necessary for the successful outgrowth of the limb along the proximodistal axis (Saunders 1948). To explain how different structures arise at different proximodistal levels as the limb bud grows out, a model was subsequently proposed based on progressive specification of increasingly distal cell fates in a domain ∼300 µm deep directly below the AER (Summerbell et al. 1973). According to this view, under the influence of the AER, cells are maintained in a so-called progress zone. These cells continuously acquire ever more distal positional information through the influence of an internal clock that is kept active as long as the cells receive signaling from the overlying AER. This process gives the cells a distal fate proportional to the length of time the cells remain in the progress zone. When cells move out of the range of AER signaling— i.e., out of the progress zone—the clock stops and their proximodistal fate therefore becomes fixed. This happens continuously, as all the cells in the progress zone—indeed, all of the cells of the limb bud—are dividing. As more cells are produced, only the members of the population closest to" @default.
- W2103558364 created "2016-06-24" @default.
- W2103558364 creator A5000092888 @default.
- W2103558364 creator A5013972193 @default.
- W2103558364 date "2007-06-15" @default.
- W2103558364 modified "2023-10-13" @default.
- W2103558364 title "Rethinking the proximodistal axis of the vertebrate limb in the molecular era" @default.
- W2103558364 cites W1583338361 @default.
- W2103558364 cites W1868418021 @default.
- W2103558364 cites W1939881246 @default.
- W2103558364 cites W1945909693 @default.
- W2103558364 cites W1967371150 @default.
- W2103558364 cites W1971943177 @default.
- W2103558364 cites W1977552366 @default.
- W2103558364 cites W1978393697 @default.
- W2103558364 cites W1987440764 @default.
- W2103558364 cites W1990797650 @default.
- W2103558364 cites W1997170970 @default.
- W2103558364 cites W1999375912 @default.
- W2103558364 cites W2005013881 @default.
- W2103558364 cites W2006045768 @default.
- W2103558364 cites W2007054642 @default.
- W2103558364 cites W2007821628 @default.
- W2103558364 cites W2022689175 @default.
- W2103558364 cites W2027071190 @default.
- W2103558364 cites W2027840176 @default.
- W2103558364 cites W2029435921 @default.
- W2103558364 cites W2033270793 @default.
- W2103558364 cites W2037369918 @default.
- W2103558364 cites W2037723379 @default.
- W2103558364 cites W2042860502 @default.
- W2103558364 cites W2045937790 @default.
- W2103558364 cites W2047013419 @default.
- W2103558364 cites W2061689243 @default.
- W2103558364 cites W2062140641 @default.
- W2103558364 cites W2066479550 @default.
- W2103558364 cites W2068742932 @default.
- W2103558364 cites W2070560929 @default.
- W2103558364 cites W2072083009 @default.
- W2103558364 cites W2082599662 @default.
- W2103558364 cites W2090186809 @default.
- W2103558364 cites W2090533250 @default.
- W2103558364 cites W2092937035 @default.
- W2103558364 cites W2098159639 @default.
- W2103558364 cites W2099002558 @default.
- W2103558364 cites W2110873651 @default.
- W2103558364 cites W2113533023 @default.
- W2103558364 cites W2129448282 @default.
- W2103558364 cites W2134072927 @default.
- W2103558364 cites W2138434278 @default.
- W2103558364 cites W2142400494 @default.
- W2103558364 cites W2150940108 @default.
- W2103558364 cites W2151544055 @default.
- W2103558364 cites W2427841335 @default.
- W2103558364 cites W4214677856 @default.
- W2103558364 cites W4236274382 @default.
- W2103558364 doi "https://doi.org/10.1101/gad.1547407" @default.
- W2103558364 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17575045" @default.
- W2103558364 hasPublicationYear "2007" @default.
- W2103558364 type Work @default.
- W2103558364 sameAs 2103558364 @default.
- W2103558364 citedByCount "237" @default.
- W2103558364 countsByYear W21035583642012 @default.
- W2103558364 countsByYear W21035583642013 @default.
- W2103558364 countsByYear W21035583642014 @default.
- W2103558364 countsByYear W21035583642015 @default.
- W2103558364 countsByYear W21035583642016 @default.
- W2103558364 countsByYear W21035583642017 @default.
- W2103558364 countsByYear W21035583642018 @default.
- W2103558364 countsByYear W21035583642019 @default.
- W2103558364 countsByYear W21035583642020 @default.
- W2103558364 countsByYear W21035583642021 @default.
- W2103558364 countsByYear W21035583642022 @default.
- W2103558364 countsByYear W21035583642023 @default.
- W2103558364 crossrefType "journal-article" @default.
- W2103558364 hasAuthorship W2103558364A5000092888 @default.
- W2103558364 hasAuthorship W2103558364A5013972193 @default.
- W2103558364 hasBestOaLocation W21035583641 @default.
- W2103558364 hasConcept C104317684 @default.
- W2103558364 hasConcept C105702510 @default.
- W2103558364 hasConcept C2778961482 @default.
- W2103558364 hasConcept C54355233 @default.
- W2103558364 hasConcept C70721500 @default.
- W2103558364 hasConcept C78458016 @default.
- W2103558364 hasConcept C86803240 @default.
- W2103558364 hasConceptScore W2103558364C104317684 @default.
- W2103558364 hasConceptScore W2103558364C105702510 @default.
- W2103558364 hasConceptScore W2103558364C2778961482 @default.
- W2103558364 hasConceptScore W2103558364C54355233 @default.
- W2103558364 hasConceptScore W2103558364C70721500 @default.
- W2103558364 hasConceptScore W2103558364C78458016 @default.
- W2103558364 hasConceptScore W2103558364C86803240 @default.
- W2103558364 hasIssue "12" @default.
- W2103558364 hasLocation W21035583641 @default.
- W2103558364 hasLocation W21035583642 @default.
- W2103558364 hasOpenAccess W2103558364 @default.
- W2103558364 hasPrimaryLocation W21035583641 @default.
- W2103558364 hasRelatedWork W1971259638 @default.