Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103574314> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2103574314 abstract "Current methods of terrain classification of remotely sensed images are not always accurate enough to be easily incorporated into an automated system for terrain classification and analysis. One of the obstacles encountered has been the development of suitable mathematical models to use for classifying the various types of datasets. Also, most methods do not allow for the inclusion of 'uncertain classes' at various stages in the analysis process, which would allow for reclassification later on as more detailed information is subsequently obtained. Recent research into neural networks at CCRS (the Canada Centre for Remote Sensing) has shown good potential for their classification capabilities with the use of simple raw input data. Furthermore, it has been demonstrated that these promising results have been obtained without the necessity of developing complex and specific mathematical models: neural networks automatically create mathematical solutions to the problems presented to them. This paper addresses further investigation into the application of neural networks at various stages in the classification of a remotely sensed image. We plan to do this in three ways: 1.Providing datasets in better prepared and preprocessed format to the neural network, 2. Providing more appropriate datasets as input to the neural network by including more parameters for class identification, and 3. Attempting to allow for 'uncertaih classes' in the form of dynamic allocation of a new classes, whenever necessary. Neural networks perform their classification tasks better if they have properly preprocessed datasets. This means that the data must be as clean and as clear as possible. To do this the data can be pre-filtered for noise using neural nets. It can also be transformed, or pre-manipulated in such a way that the channels provided for input are more finely tuned for subsequent class identification. Any classification system can make a general classification with a basic representation set, and with the inclusion of more identifying characteristics in the representation set, a more detailed and definitive classification can be achieved. In other words, the more parameters that are made available to the system, the easier it is to identify items in the dataset. Therefore we will experiment with more appropriate datasets by including spatial parameters along with the conventional spectral channels as input to the neural network. Finally, there are always some items in a dataset which cannot be properly identified on the basis of the representation set the system has available to it at the time. Accordingly, we are trying to accommodate this fact with the provision of uncertain classes to be reclassified at a later stage in the analysis process. In conclusion, we hope to be able to illustrate that neural network technology is another useful tool which can be added to the list of conventional tools to improve the accuracy of terrain class identification for inclusion into an automated expert system." @default.
- W2103574314 created "2016-06-24" @default.
- W2103574314 creator A5024982493 @default.
- W2103574314 creator A5065298487 @default.
- W2103574314 date "2005-08-24" @default.
- W2103574314 modified "2023-09-26" @default.
- W2103574314 title "Using Neural Networks In Remote Sensing Image Processing" @default.
- W2103574314 doi "https://doi.org/10.1109/igarss.1991.575483" @default.
- W2103574314 hasPublicationYear "2005" @default.
- W2103574314 type Work @default.
- W2103574314 sameAs 2103574314 @default.
- W2103574314 citedByCount "0" @default.
- W2103574314 crossrefType "proceedings-article" @default.
- W2103574314 hasAuthorship W2103574314A5024982493 @default.
- W2103574314 hasAuthorship W2103574314A5065298487 @default.
- W2103574314 hasConcept C111919701 @default.
- W2103574314 hasConcept C115961682 @default.
- W2103574314 hasConcept C116834253 @default.
- W2103574314 hasConcept C119857082 @default.
- W2103574314 hasConcept C124101348 @default.
- W2103574314 hasConcept C132964779 @default.
- W2103574314 hasConcept C153180895 @default.
- W2103574314 hasConcept C154945302 @default.
- W2103574314 hasConcept C161840515 @default.
- W2103574314 hasConcept C166957645 @default.
- W2103574314 hasConcept C199360897 @default.
- W2103574314 hasConcept C205649164 @default.
- W2103574314 hasConcept C2776505523 @default.
- W2103574314 hasConcept C2777212361 @default.
- W2103574314 hasConcept C41008148 @default.
- W2103574314 hasConcept C50644808 @default.
- W2103574314 hasConcept C58640448 @default.
- W2103574314 hasConcept C59822182 @default.
- W2103574314 hasConcept C75294576 @default.
- W2103574314 hasConcept C86803240 @default.
- W2103574314 hasConcept C98045186 @default.
- W2103574314 hasConceptScore W2103574314C111919701 @default.
- W2103574314 hasConceptScore W2103574314C115961682 @default.
- W2103574314 hasConceptScore W2103574314C116834253 @default.
- W2103574314 hasConceptScore W2103574314C119857082 @default.
- W2103574314 hasConceptScore W2103574314C124101348 @default.
- W2103574314 hasConceptScore W2103574314C132964779 @default.
- W2103574314 hasConceptScore W2103574314C153180895 @default.
- W2103574314 hasConceptScore W2103574314C154945302 @default.
- W2103574314 hasConceptScore W2103574314C161840515 @default.
- W2103574314 hasConceptScore W2103574314C166957645 @default.
- W2103574314 hasConceptScore W2103574314C199360897 @default.
- W2103574314 hasConceptScore W2103574314C205649164 @default.
- W2103574314 hasConceptScore W2103574314C2776505523 @default.
- W2103574314 hasConceptScore W2103574314C2777212361 @default.
- W2103574314 hasConceptScore W2103574314C41008148 @default.
- W2103574314 hasConceptScore W2103574314C50644808 @default.
- W2103574314 hasConceptScore W2103574314C58640448 @default.
- W2103574314 hasConceptScore W2103574314C59822182 @default.
- W2103574314 hasConceptScore W2103574314C75294576 @default.
- W2103574314 hasConceptScore W2103574314C86803240 @default.
- W2103574314 hasConceptScore W2103574314C98045186 @default.
- W2103574314 hasLocation W21035743141 @default.
- W2103574314 hasOpenAccess W2103574314 @default.
- W2103574314 hasPrimaryLocation W21035743141 @default.
- W2103574314 hasRelatedWork W1493588118 @default.
- W2103574314 hasRelatedWork W1970746706 @default.
- W2103574314 hasRelatedWork W2018380704 @default.
- W2103574314 hasRelatedWork W2023703323 @default.
- W2103574314 hasRelatedWork W2030280642 @default.
- W2103574314 hasRelatedWork W2040155641 @default.
- W2103574314 hasRelatedWork W2094236087 @default.
- W2103574314 hasRelatedWork W2102338421 @default.
- W2103574314 hasRelatedWork W2148726749 @default.
- W2103574314 hasRelatedWork W2164046585 @default.
- W2103574314 hasRelatedWork W2164473316 @default.
- W2103574314 hasRelatedWork W2553193075 @default.
- W2103574314 hasRelatedWork W2770637343 @default.
- W2103574314 hasRelatedWork W2974790478 @default.
- W2103574314 hasRelatedWork W3008402896 @default.
- W2103574314 hasRelatedWork W3116835439 @default.
- W2103574314 hasRelatedWork W3118513496 @default.
- W2103574314 hasRelatedWork W3206079748 @default.
- W2103574314 hasRelatedWork W1565342356 @default.
- W2103574314 hasRelatedWork W2867279279 @default.
- W2103574314 isParatext "false" @default.
- W2103574314 isRetracted "false" @default.
- W2103574314 magId "2103574314" @default.
- W2103574314 workType "article" @default.