Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103595132> ?p ?o ?g. }
- W2103595132 endingPage "18646" @default.
- W2103595132 startingPage "18631" @default.
- W2103595132 abstract "The 11‐level Geophysical Fluid Dynamics Laboratory (GFDL) global chemical transport model has been used to assess the impact of stratospheric NO x production on tropospheric reactive nitrogen (NO y ) concentrations. A temporally varying source function was constructed using specified two‐dimensional, monthly average O 3 , N 2 O, temperature, and surface pressure data generated by the GFDL “SKYHI” model. The calculated yearly NO y , production rate is 0.64 Tg N (0.64×10 12 g N). A wet removal scheme, which distinguishes between stable and convective rain based on the bulk Richardson number, is introduced. Simulations have been performed with a simplified chemical mechanism which fractionates NO y , into soluble and insoluble species. The role of peroxyacetyl nitrate (PAN) in determining the impact of stratospheric injection on the tropospheric NO y , budget is studied by comparing results of simulations with and without PAN chemistry. We conclude that (1) the stratospheric source is too small to account for background surface NO y , concentrations observed in the remote (i.e., regions a few thousand kilometers from continental source regions) troposphere. Surface NO y , mixing ratios seldom exceed 10 parts per trillion by volume (pptv) in the model northern hemisphere and are always below 20 pptv. Together, fossil fuel combustion emissions and stratospheric injection account for less than 10% of observed surface nitrate concentrations in the remote tropical Pacific. (2) The impact of the stratospheric source is comparable to that of the fossil fuel combustion source in terms of NO y , mixing ratios in the northern hemisphere at the 500 mbar model level and is more important in the middle and high latitudes of the southern hemisphere. At the 315 mbar model level the stratospheric source contribution to NO y , levels is more important than that of the fossil fuel source at all latitudes, except in the tropics. However, substantial contributions from other NO y sources are needed to explain observations in the remote middle and upper troposphere. (3) Inclusion of PAN chemistry has the effect of increasing model‐calculated surface NO y , mixing ratios in the northern hemisphere middle and high latitudes by factors of 1.5–3 during winter/spring and by factors of 2–4 during summer/fall. Surface NO y , mixing ratios in the southern hemisphere show a smaller increase due to slower rates of PAN formation. This is a direct result of lower hydrocarbon concentrations in the southern hemisphere." @default.
- W2103595132 created "2016-06-24" @default.
- W2103595132 creator A5032738975 @default.
- W2103595132 creator A5033649666 @default.
- W2103595132 creator A5046783847 @default.
- W2103595132 creator A5052568588 @default.
- W2103595132 date "1991-10-20" @default.
- W2103595132 modified "2023-10-15" @default.
- W2103595132 title "The relative impact of stratospheric photochemical production on tropospheric NO<sub><i>y</i></sub> levels: A model study" @default.
- W2103595132 cites W1481778868 @default.
- W2103595132 cites W1966236918 @default.
- W2103595132 cites W1977747729 @default.
- W2103595132 cites W1978153810 @default.
- W2103595132 cites W1978863585 @default.
- W2103595132 cites W1979276756 @default.
- W2103595132 cites W1979704457 @default.
- W2103595132 cites W1985908435 @default.
- W2103595132 cites W1989013756 @default.
- W2103595132 cites W1994274844 @default.
- W2103595132 cites W1999740995 @default.
- W2103595132 cites W1999944552 @default.
- W2103595132 cites W2002800996 @default.
- W2103595132 cites W2008046036 @default.
- W2103595132 cites W2009470133 @default.
- W2103595132 cites W2018225088 @default.
- W2103595132 cites W2020678016 @default.
- W2103595132 cites W2023913076 @default.
- W2103595132 cites W2026948518 @default.
- W2103595132 cites W2034018957 @default.
- W2103595132 cites W2042225438 @default.
- W2103595132 cites W2043854737 @default.
- W2103595132 cites W2044300880 @default.
- W2103595132 cites W2053511065 @default.
- W2103595132 cites W2057816532 @default.
- W2103595132 cites W2076278172 @default.
- W2103595132 cites W2079742809 @default.
- W2103595132 cites W2085109789 @default.
- W2103595132 cites W2086164719 @default.
- W2103595132 cites W2091429404 @default.
- W2103595132 cites W2094941105 @default.
- W2103595132 cites W2105679796 @default.
- W2103595132 cites W2121977456 @default.
- W2103595132 cites W2165973516 @default.
- W2103595132 cites W2174469878 @default.
- W2103595132 cites W4239179679 @default.
- W2103595132 cites W4245752399 @default.
- W2103595132 doi "https://doi.org/10.1029/91jd01665" @default.
- W2103595132 hasPublicationYear "1991" @default.
- W2103595132 type Work @default.
- W2103595132 sameAs 2103595132 @default.
- W2103595132 citedByCount "75" @default.
- W2103595132 countsByYear W21035951322013 @default.
- W2103595132 countsByYear W21035951322018 @default.
- W2103595132 countsByYear W21035951322019 @default.
- W2103595132 crossrefType "journal-article" @default.
- W2103595132 hasAuthorship W2103595132A5032738975 @default.
- W2103595132 hasAuthorship W2103595132A5033649666 @default.
- W2103595132 hasAuthorship W2103595132A5046783847 @default.
- W2103595132 hasAuthorship W2103595132A5052568588 @default.
- W2103595132 hasConcept C105923489 @default.
- W2103595132 hasConcept C116119225 @default.
- W2103595132 hasConcept C127313418 @default.
- W2103595132 hasConcept C163861444 @default.
- W2103595132 hasConcept C178790620 @default.
- W2103595132 hasConcept C18459110 @default.
- W2103595132 hasConcept C185592680 @default.
- W2103595132 hasConcept C203032635 @default.
- W2103595132 hasConcept C2777252438 @default.
- W2103595132 hasConcept C2778835443 @default.
- W2103595132 hasConcept C2779100707 @default.
- W2103595132 hasConcept C39432304 @default.
- W2103595132 hasConcept C49204034 @default.
- W2103595132 hasConcept C537208039 @default.
- W2103595132 hasConcept C9075549 @default.
- W2103595132 hasConcept C91586092 @default.
- W2103595132 hasConceptScore W2103595132C105923489 @default.
- W2103595132 hasConceptScore W2103595132C116119225 @default.
- W2103595132 hasConceptScore W2103595132C127313418 @default.
- W2103595132 hasConceptScore W2103595132C163861444 @default.
- W2103595132 hasConceptScore W2103595132C178790620 @default.
- W2103595132 hasConceptScore W2103595132C18459110 @default.
- W2103595132 hasConceptScore W2103595132C185592680 @default.
- W2103595132 hasConceptScore W2103595132C203032635 @default.
- W2103595132 hasConceptScore W2103595132C2777252438 @default.
- W2103595132 hasConceptScore W2103595132C2778835443 @default.
- W2103595132 hasConceptScore W2103595132C2779100707 @default.
- W2103595132 hasConceptScore W2103595132C39432304 @default.
- W2103595132 hasConceptScore W2103595132C49204034 @default.
- W2103595132 hasConceptScore W2103595132C537208039 @default.
- W2103595132 hasConceptScore W2103595132C9075549 @default.
- W2103595132 hasConceptScore W2103595132C91586092 @default.
- W2103595132 hasIssue "D10" @default.
- W2103595132 hasLocation W21035951321 @default.
- W2103595132 hasOpenAccess W2103595132 @default.
- W2103595132 hasPrimaryLocation W21035951321 @default.
- W2103595132 hasRelatedWork W1949157007 @default.
- W2103595132 hasRelatedWork W1965960627 @default.
- W2103595132 hasRelatedWork W1982364394 @default.