Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103732007> ?p ?o ?g. }
- W2103732007 endingPage "238" @default.
- W2103732007 startingPage "224" @default.
- W2103732007 abstract "Several algorithms have been proposed in the literature for image denoising but none exhibit optimal performance for all range and types of noise and for all image acquisition modes. We describe a new general framework, built from four-neighborhood clique system, for denoising medical images. The kernel quantifies smoothness energy of spatially continuous anatomical structures. Scalar and vector valued quantification of smoothness energy configures images for Bayesian and variational denoising modes, respectively. Within variational mode, the choice of norm adapts images for either total variation or Tikhonov technique. Our proposal has three significant contributions. First, it demonstrates that the four-neighborhood clique kernel is a basic filter, in same class as Gaussian and wavelet filters, from which state-of-the-art denoising algorithms are derived. Second, we formulate theoretical analysis, which connects and integrates Bayesian and variational techniques into a two-layer structured denoising system. Third, our proposal reveals that the first layer of the new denoising system is a hitherto unknown form of Markov random field model referred to as single-layer Markov random field (SLMRF). The new model denoises a specific type of medical image by minimizing energy subject to knowledge of mathematical model that describes relationship between the image smoothness energy and noise level but without reference to a classical prior model. SLMRF was applied to and evaluated on two real brain magnetic resonance imaging datasets acquired with different protocols. Comparative performance evaluation shows that our proposal is comparable to state-of-the-art algorithms. SLMRF is simple and computationally efficient because it does not incorporate a regularization parameter. Furthermore, it preserves edges and its output is devoid of blurring and ringing artifacts associated with Gaussian-based and wavelet-based algorithms. The denoising system is potentially applicable to speckle reduction in ultrasound images and extendable to three-layer structure that account for texture features in medical images. © 2014 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 24, 224–238, 2014" @default.
- W2103732007 created "2016-06-24" @default.
- W2103732007 creator A5008598861 @default.
- W2103732007 creator A5068016700 @default.
- W2103732007 creator A5090600716 @default.
- W2103732007 date "2014-08-13" @default.
- W2103732007 modified "2023-09-26" @default.
- W2103732007 title "Four-neighborhood clique kernel: A general framework for Bayesian and variational techniques of noise reduction in magnetic resonance images of the brain" @default.
- W2103732007 cites W118540534 @default.
- W2103732007 cites W1783631828 @default.
- W2103732007 cites W1977066703 @default.
- W2103732007 cites W2005089986 @default.
- W2103732007 cites W2006262236 @default.
- W2103732007 cites W2007203285 @default.
- W2103732007 cites W2011215795 @default.
- W2103732007 cites W2012694870 @default.
- W2103732007 cites W2017848200 @default.
- W2103732007 cites W2020999234 @default.
- W2103732007 cites W2021014729 @default.
- W2103732007 cites W2029987614 @default.
- W2103732007 cites W2045105614 @default.
- W2103732007 cites W2054965818 @default.
- W2103732007 cites W2063733543 @default.
- W2103732007 cites W2073660032 @default.
- W2103732007 cites W2079724595 @default.
- W2103732007 cites W2093009907 @default.
- W2103732007 cites W2099244020 @default.
- W2103732007 cites W2099839308 @default.
- W2103732007 cites W2103559027 @default.
- W2103732007 cites W2104404402 @default.
- W2103732007 cites W2109991658 @default.
- W2103732007 cites W2116641053 @default.
- W2103732007 cites W2121174252 @default.
- W2103732007 cites W2125509202 @default.
- W2103732007 cites W2125527601 @default.
- W2103732007 cites W2132140814 @default.
- W2103732007 cites W2135209903 @default.
- W2103732007 cites W2137676365 @default.
- W2103732007 cites W2142592339 @default.
- W2103732007 cites W2146842127 @default.
- W2103732007 cites W2149117060 @default.
- W2103732007 cites W2150134853 @default.
- W2103732007 cites W2153663612 @default.
- W2103732007 cites W2154011501 @default.
- W2103732007 cites W2155102938 @default.
- W2103732007 cites W2158940042 @default.
- W2103732007 cites W2160637922 @default.
- W2103732007 cites W2498216762 @default.
- W2103732007 cites W4230275735 @default.
- W2103732007 doi "https://doi.org/10.1002/ima.22098" @default.
- W2103732007 hasPublicationYear "2014" @default.
- W2103732007 type Work @default.
- W2103732007 sameAs 2103732007 @default.
- W2103732007 citedByCount "1" @default.
- W2103732007 countsByYear W21037320072015 @default.
- W2103732007 crossrefType "journal-article" @default.
- W2103732007 hasAuthorship W2103732007A5008598861 @default.
- W2103732007 hasAuthorship W2103732007A5068016700 @default.
- W2103732007 hasAuthorship W2103732007A5090600716 @default.
- W2103732007 hasConcept C11413529 @default.
- W2103732007 hasConcept C114614502 @default.
- W2103732007 hasConcept C115961682 @default.
- W2103732007 hasConcept C124504099 @default.
- W2103732007 hasConcept C126255220 @default.
- W2103732007 hasConcept C153180895 @default.
- W2103732007 hasConcept C154945302 @default.
- W2103732007 hasConcept C163294075 @default.
- W2103732007 hasConcept C2778045648 @default.
- W2103732007 hasConcept C33923547 @default.
- W2103732007 hasConcept C41008148 @default.
- W2103732007 hasConcept C74193536 @default.
- W2103732007 hasConceptScore W2103732007C11413529 @default.
- W2103732007 hasConceptScore W2103732007C114614502 @default.
- W2103732007 hasConceptScore W2103732007C115961682 @default.
- W2103732007 hasConceptScore W2103732007C124504099 @default.
- W2103732007 hasConceptScore W2103732007C126255220 @default.
- W2103732007 hasConceptScore W2103732007C153180895 @default.
- W2103732007 hasConceptScore W2103732007C154945302 @default.
- W2103732007 hasConceptScore W2103732007C163294075 @default.
- W2103732007 hasConceptScore W2103732007C2778045648 @default.
- W2103732007 hasConceptScore W2103732007C33923547 @default.
- W2103732007 hasConceptScore W2103732007C41008148 @default.
- W2103732007 hasConceptScore W2103732007C74193536 @default.
- W2103732007 hasIssue "3" @default.
- W2103732007 hasLocation W21037320071 @default.
- W2103732007 hasOpenAccess W2103732007 @default.
- W2103732007 hasPrimaryLocation W21037320071 @default.
- W2103732007 hasRelatedWork W2103444992 @default.
- W2103732007 hasRelatedWork W2110459882 @default.
- W2103732007 hasRelatedWork W2118043379 @default.
- W2103732007 hasRelatedWork W2135003436 @default.
- W2103732007 hasRelatedWork W2141018987 @default.
- W2103732007 hasRelatedWork W2151022383 @default.
- W2103732007 hasRelatedWork W2361352747 @default.
- W2103732007 hasRelatedWork W2406849952 @default.
- W2103732007 hasRelatedWork W2771450566 @default.
- W2103732007 hasRelatedWork W2092619848 @default.
- W2103732007 hasVolume "24" @default.