Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103751982> ?p ?o ?g. }
- W2103751982 endingPage "277" @default.
- W2103751982 startingPage "257" @default.
- W2103751982 abstract "Protein stability often is studied in vitro through the use of urea and guanidinium chloride, chemical cosolvents that disrupt protein native structure. Much controversy still surrounds the underlying mechanism by which these molecules denature proteins. Here we review current thinking on various aspects of chemical denaturation. We begin by discussing classic models of protein folding and how the effects of denaturants may fit into this picture through their modulation of the collapse, or coil-globule transition, which typically precedes folding. Subsequently, we examine recent molecular dynamics simulations that have shed new light on the possible microscopic origins of the solvation effects brought on by denaturants. It seems likely that both denaturants operate by facilitating solvation of hydrophobic regions of proteins. Finally, we present recent single-molecule fluorescence studies of denatured proteins, the analysis of which corroborates the role of denaturants in shifting the equilibrium of the coil-globule transition." @default.
- W2103751982 created "2016-06-24" @default.
- W2103751982 creator A5003319572 @default.
- W2103751982 creator A5022792589 @default.
- W2103751982 date "2011-05-05" @default.
- W2103751982 modified "2023-10-14" @default.
- W2103751982 title "Role of Solvation Effects in Protein Denaturation: From Thermodynamics to Single Molecules and Back" @default.
- W2103751982 cites W102281971 @default.
- W2103751982 cites W111310851 @default.
- W2103751982 cites W1490295882 @default.
- W2103751982 cites W1499741065 @default.
- W2103751982 cites W1554093892 @default.
- W2103751982 cites W1569015250 @default.
- W2103751982 cites W1593425281 @default.
- W2103751982 cites W1606365631 @default.
- W2103751982 cites W1935984619 @default.
- W2103751982 cites W1963601673 @default.
- W2103751982 cites W1966469642 @default.
- W2103751982 cites W1968280483 @default.
- W2103751982 cites W1971847312 @default.
- W2103751982 cites W1973897761 @default.
- W2103751982 cites W1974027664 @default.
- W2103751982 cites W1974877835 @default.
- W2103751982 cites W1976721437 @default.
- W2103751982 cites W1978195452 @default.
- W2103751982 cites W1980676977 @default.
- W2103751982 cites W1982709972 @default.
- W2103751982 cites W1984698569 @default.
- W2103751982 cites W1985716931 @default.
- W2103751982 cites W1989400985 @default.
- W2103751982 cites W1995194944 @default.
- W2103751982 cites W1996035003 @default.
- W2103751982 cites W1997723318 @default.
- W2103751982 cites W1998045383 @default.
- W2103751982 cites W1998893348 @default.
- W2103751982 cites W2003204624 @default.
- W2103751982 cites W2009857351 @default.
- W2103751982 cites W2015517515 @default.
- W2103751982 cites W2016633457 @default.
- W2103751982 cites W2017666052 @default.
- W2103751982 cites W2027455867 @default.
- W2103751982 cites W2033782813 @default.
- W2103751982 cites W2034112681 @default.
- W2103751982 cites W2034911622 @default.
- W2103751982 cites W2036326896 @default.
- W2103751982 cites W2036712659 @default.
- W2103751982 cites W2041505869 @default.
- W2103751982 cites W2041774584 @default.
- W2103751982 cites W2044730187 @default.
- W2103751982 cites W2045439258 @default.
- W2103751982 cites W2045933761 @default.
- W2103751982 cites W2048354558 @default.
- W2103751982 cites W2050463871 @default.
- W2103751982 cites W2051633053 @default.
- W2103751982 cites W2060002111 @default.
- W2103751982 cites W2062473668 @default.
- W2103751982 cites W2062701236 @default.
- W2103751982 cites W2066041565 @default.
- W2103751982 cites W2068977441 @default.
- W2103751982 cites W2074443308 @default.
- W2103751982 cites W2078115213 @default.
- W2103751982 cites W2083724830 @default.
- W2103751982 cites W2086748420 @default.
- W2103751982 cites W2088180591 @default.
- W2103751982 cites W2096409300 @default.
- W2103751982 cites W2096966529 @default.
- W2103751982 cites W2099572354 @default.
- W2103751982 cites W2101638068 @default.
- W2103751982 cites W2103275034 @default.
- W2103751982 cites W2104803454 @default.
- W2103751982 cites W2106043217 @default.
- W2103751982 cites W2110113231 @default.
- W2103751982 cites W2114304598 @default.
- W2103751982 cites W2116076986 @default.
- W2103751982 cites W2122369986 @default.
- W2103751982 cites W2124597092 @default.
- W2103751982 cites W2125823338 @default.
- W2103751982 cites W2127524427 @default.
- W2103751982 cites W2144729032 @default.
- W2103751982 cites W2158127085 @default.
- W2103751982 cites W2159822943 @default.
- W2103751982 cites W2162651138 @default.
- W2103751982 cites W2169589905 @default.
- W2103751982 cites W2317026060 @default.
- W2103751982 doi "https://doi.org/10.1146/annurev-physchem-032210-103531" @default.
- W2103751982 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3211090" @default.
- W2103751982 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21219136" @default.
- W2103751982 hasPublicationYear "2011" @default.
- W2103751982 type Work @default.
- W2103751982 sameAs 2103751982 @default.
- W2103751982 citedByCount "242" @default.
- W2103751982 countsByYear W21037519822012 @default.
- W2103751982 countsByYear W21037519822013 @default.
- W2103751982 countsByYear W21037519822014 @default.
- W2103751982 countsByYear W21037519822015 @default.
- W2103751982 countsByYear W21037519822016 @default.
- W2103751982 countsByYear W21037519822017 @default.
- W2103751982 countsByYear W21037519822018 @default.