Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103869087> ?p ?o ?g. }
- W2103869087 endingPage "221" @default.
- W2103869087 startingPage "183" @default.
- W2103869087 abstract "The problem of prediction is revisited with a view towards going beyond the typical nonparametric setting and reaching a fully model-free environment for predictive inference, i.e., point predictors and predictive intervals. A basic principle of model-free prediction is laid out based on the notion of transforming a given setup into one that is easier to work with, namely i.i.d. or Gaussian. As an application, the problem of nonparametric regression is addressed in detail; the model-free predictors are worked out, and shown to be applicable under minimal assumptions. Interestingly, model-free prediction in regression is a totally automatic technique that does not necessitate the search for an optimal data transformation before model fitting. The resulting model-free predictive distributions and intervals are compared to their corresponding model-based analogs, and the use of cross-validation is extensively discussed. As an aside, improved prediction intervals in linear regression are also obtained." @default.
- W2103869087 created "2016-06-24" @default.
- W2103869087 creator A5022975114 @default.
- W2103869087 date "2013-04-05" @default.
- W2103869087 modified "2023-09-27" @default.
- W2103869087 title "Model-free model-fitting and predictive distributions" @default.
- W2103869087 cites W1532799395 @default.
- W2103869087 cites W1964295675 @default.
- W2103869087 cites W1971713783 @default.
- W2103869087 cites W1993247582 @default.
- W2103869087 cites W1995565517 @default.
- W2103869087 cites W2008353574 @default.
- W2103869087 cites W2009067475 @default.
- W2103869087 cites W2011626015 @default.
- W2103869087 cites W2012163884 @default.
- W2103869087 cites W2019591111 @default.
- W2103869087 cites W2027806855 @default.
- W2103869087 cites W2030748132 @default.
- W2103869087 cites W2040615655 @default.
- W2103869087 cites W2046483399 @default.
- W2103869087 cites W2051503552 @default.
- W2103869087 cites W2064129461 @default.
- W2103869087 cites W2064758027 @default.
- W2103869087 cites W2067990213 @default.
- W2103869087 cites W2073438042 @default.
- W2103869087 cites W2076876316 @default.
- W2103869087 cites W2091290241 @default.
- W2103869087 cites W2091945698 @default.
- W2103869087 cites W2093661642 @default.
- W2103869087 cites W2093743402 @default.
- W2103869087 cites W2096904991 @default.
- W2103869087 cites W2117897510 @default.
- W2103869087 cites W2128465342 @default.
- W2103869087 cites W2130529909 @default.
- W2103869087 cites W2134269439 @default.
- W2103869087 cites W2146888763 @default.
- W2103869087 cites W2161059922 @default.
- W2103869087 cites W2172001462 @default.
- W2103869087 cites W2327088997 @default.
- W2103869087 cites W2487874953 @default.
- W2103869087 cites W2488758846 @default.
- W2103869087 cites W2502759836 @default.
- W2103869087 cites W3106291442 @default.
- W2103869087 cites W3106889297 @default.
- W2103869087 cites W3123175787 @default.
- W2103869087 cites W362815228 @default.
- W2103869087 cites W4206419526 @default.
- W2103869087 cites W4210310779 @default.
- W2103869087 cites W4230173782 @default.
- W2103869087 cites W4231580960 @default.
- W2103869087 cites W4232359393 @default.
- W2103869087 cites W4247100500 @default.
- W2103869087 cites W4249031136 @default.
- W2103869087 cites W4250064843 @default.
- W2103869087 cites W4298872162 @default.
- W2103869087 cites W4299798163 @default.
- W2103869087 doi "https://doi.org/10.1007/s11749-013-0317-7" @default.
- W2103869087 hasPublicationYear "2013" @default.
- W2103869087 type Work @default.
- W2103869087 sameAs 2103869087 @default.
- W2103869087 citedByCount "40" @default.
- W2103869087 countsByYear W21038690872014 @default.
- W2103869087 countsByYear W21038690872015 @default.
- W2103869087 countsByYear W21038690872016 @default.
- W2103869087 countsByYear W21038690872017 @default.
- W2103869087 countsByYear W21038690872018 @default.
- W2103869087 countsByYear W21038690872019 @default.
- W2103869087 countsByYear W21038690872020 @default.
- W2103869087 countsByYear W21038690872021 @default.
- W2103869087 countsByYear W21038690872022 @default.
- W2103869087 countsByYear W21038690872023 @default.
- W2103869087 crossrefType "journal-article" @default.
- W2103869087 hasAuthorship W2103869087A5022975114 @default.
- W2103869087 hasBestOaLocation W21038690872 @default.
- W2103869087 hasConcept C102366305 @default.
- W2103869087 hasConcept C103402496 @default.
- W2103869087 hasConcept C104317684 @default.
- W2103869087 hasConcept C105795698 @default.
- W2103869087 hasConcept C107673813 @default.
- W2103869087 hasConcept C121332964 @default.
- W2103869087 hasConcept C152877465 @default.
- W2103869087 hasConcept C154945302 @default.
- W2103869087 hasConcept C160234255 @default.
- W2103869087 hasConcept C162376815 @default.
- W2103869087 hasConcept C163175372 @default.
- W2103869087 hasConcept C163716315 @default.
- W2103869087 hasConcept C185592680 @default.
- W2103869087 hasConcept C204241405 @default.
- W2103869087 hasConcept C2776214188 @default.
- W2103869087 hasConcept C28826006 @default.
- W2103869087 hasConcept C33923547 @default.
- W2103869087 hasConcept C41008148 @default.
- W2103869087 hasConcept C55493867 @default.
- W2103869087 hasConcept C61326573 @default.
- W2103869087 hasConcept C62520636 @default.
- W2103869087 hasConcept C74127309 @default.
- W2103869087 hasConcept C83546350 @default.
- W2103869087 hasConcept C917703 @default.