Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103915987> ?p ?o ?g. }
- W2103915987 abstract "Precise classification of cancer types is critically important for early cancer diagnosis and treatment. Numerous efforts have been made to use gene expression profiles to improve precision of tumor classification. However, reliable cancer-related signals are generally lacking. Using recent datasets on colon and prostate cancer, a data transformation procedure from single gene expression to pair-wise gene expression ratio is proposed. Making use of the internal consistency of each expression profiling dataset this transformation improves the signal to noise ratio of the dataset and uncovers new relevant cancer-related signals (features). The efficiency in using the transformed dataset to perform normal/tumor classification was investigated using feature partitioning with informative features (gene annotation) as discriminating axes (single gene expression or pair-wise gene expression ratio). Classification results were compared to the original datasets for up to 10-feature model classifiers. 82 and 262 genes that have high correlation to tissue phenotype were selected from the colon and prostate datasets respectively. Remarkably, data transformation of the highly noisy expression data successfully led to lower the coefficient of variation (CV) for the within-class samples as well as improved the correlation with tissue phenotypes. The transformed dataset exhibited lower CV when compared to that of single gene expression. In the colon cancer set, the minimum CV decreased from 45.3% to 16.5%. In prostate cancer, comparable CV was achieved with and without transformation. This improvement in CV, coupled with the improved correlation between the pair-wise gene expression ratio and tissue phenotypes, yielded higher classification efficiency, especially with the colon dataset – from 87.1% to 93.5%. Over 90% of the top ten discriminating axes in both datasets showed significant improvement after data transformation. The high classification efficiency achieved suggested that there exist some cancer-related signals in the form of pair-wise gene expression ratio. The results from this study indicated that: 1) in the case when the pair-wise expression ratio transformation achieves lower CV and higher correlation to tissue phenotypes, a better classification of tissue type will follow. 2) the comparable classification accuracy achieved after data transformation suggested that pair-wise gene expression ratio between some pairs of genes can identify reliable markers for cancer." @default.
- W2103915987 created "2016-06-24" @default.
- W2103915987 creator A5008797658 @default.
- W2103915987 creator A5014070416 @default.
- W2103915987 creator A5055600240 @default.
- W2103915987 creator A5060427500 @default.
- W2103915987 creator A5082774427 @default.
- W2103915987 creator A5083255721 @default.
- W2103915987 date "2004-10-07" @default.
- W2103915987 modified "2023-09-30" @default.
- W2103915987 title "Classification between normal and tumor tissues based on the pair-wise gene expression ratio" @default.
- W2103915987 cites W1493424053 @default.
- W2103915987 cites W1502076562 @default.
- W2103915987 cites W1505763719 @default.
- W2103915987 cites W1564033431 @default.
- W2103915987 cites W1576988825 @default.
- W2103915987 cites W1673730923 @default.
- W2103915987 cites W180015230 @default.
- W2103915987 cites W1836115926 @default.
- W2103915987 cites W1926342466 @default.
- W2103915987 cites W1945743004 @default.
- W2103915987 cites W1992683698 @default.
- W2103915987 cites W1996464993 @default.
- W2103915987 cites W2000492480 @default.
- W2103915987 cites W2001171502 @default.
- W2103915987 cites W2003312227 @default.
- W2103915987 cites W2004905808 @default.
- W2103915987 cites W2008276243 @default.
- W2103915987 cites W2019534639 @default.
- W2103915987 cites W2021237456 @default.
- W2103915987 cites W2034269086 @default.
- W2103915987 cites W2035903964 @default.
- W2103915987 cites W2036902495 @default.
- W2103915987 cites W2037915151 @default.
- W2103915987 cites W2043235003 @default.
- W2103915987 cites W2046129883 @default.
- W2103915987 cites W2057234832 @default.
- W2103915987 cites W2060684880 @default.
- W2103915987 cites W2066279119 @default.
- W2103915987 cites W2070182323 @default.
- W2103915987 cites W2071123815 @default.
- W2103915987 cites W2076372398 @default.
- W2103915987 cites W2087684630 @default.
- W2103915987 cites W2094079572 @default.
- W2103915987 cites W2097706568 @default.
- W2103915987 cites W2107956883 @default.
- W2103915987 cites W2112076133 @default.
- W2103915987 cites W2112364930 @default.
- W2103915987 cites W2117131487 @default.
- W2103915987 cites W2118488518 @default.
- W2103915987 cites W2119668204 @default.
- W2103915987 cites W2120654193 @default.
- W2103915987 cites W2121071095 @default.
- W2103915987 cites W2133111499 @default.
- W2103915987 cites W2136380442 @default.
- W2103915987 cites W2137206793 @default.
- W2103915987 cites W2154471277 @default.
- W2103915987 cites W2159400887 @default.
- W2103915987 cites W2159805782 @default.
- W2103915987 cites W2165130255 @default.
- W2103915987 cites W2262161731 @default.
- W2103915987 cites W2403652571 @default.
- W2103915987 cites W2408737056 @default.
- W2103915987 cites W2468955357 @default.
- W2103915987 cites W3191599952 @default.
- W2103915987 cites W4229829601 @default.
- W2103915987 cites W4252940386 @default.
- W2103915987 cites W47542087 @default.
- W2103915987 doi "https://doi.org/10.1186/1471-2407-4-72" @default.
- W2103915987 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/524507" @default.
- W2103915987 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15469618" @default.
- W2103915987 hasPublicationYear "2004" @default.
- W2103915987 type Work @default.
- W2103915987 sameAs 2103915987 @default.
- W2103915987 citedByCount "26" @default.
- W2103915987 countsByYear W21039159872012 @default.
- W2103915987 countsByYear W21039159872013 @default.
- W2103915987 countsByYear W21039159872015 @default.
- W2103915987 countsByYear W21039159872016 @default.
- W2103915987 countsByYear W21039159872017 @default.
- W2103915987 countsByYear W21039159872018 @default.
- W2103915987 countsByYear W21039159872019 @default.
- W2103915987 countsByYear W21039159872020 @default.
- W2103915987 crossrefType "journal-article" @default.
- W2103915987 hasAuthorship W2103915987A5008797658 @default.
- W2103915987 hasAuthorship W2103915987A5014070416 @default.
- W2103915987 hasAuthorship W2103915987A5055600240 @default.
- W2103915987 hasAuthorship W2103915987A5060427500 @default.
- W2103915987 hasAuthorship W2103915987A5082774427 @default.
- W2103915987 hasAuthorship W2103915987A5083255721 @default.
- W2103915987 hasBestOaLocation W21039159871 @default.
- W2103915987 hasConcept C104317684 @default.
- W2103915987 hasConcept C117220453 @default.
- W2103915987 hasConcept C121608353 @default.
- W2103915987 hasConcept C127716648 @default.
- W2103915987 hasConcept C150194340 @default.
- W2103915987 hasConcept C18431079 @default.
- W2103915987 hasConcept C204241405 @default.
- W2103915987 hasConcept C2524010 @default.
- W2103915987 hasConcept C2780192828 @default.