Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103973762> ?p ?o ?g. }
- W2103973762 endingPage "564" @default.
- W2103973762 startingPage "552" @default.
- W2103973762 abstract "Time-critical neural network applications that require fully parallel hardware implementations for maximal throughput are considered. The rich array of technologies that are being pursued is surveyed, and the analog CMOS VLSI medium approach is focused on. This medium is messy in that limited dynamic range, offset voltages, and noise sources all reduce precision. The authors examine how neural networks can be directly implemented in analog VLSI, giving examples of approaches that have been pursued to date. Two important application areas are highlighted: optimization, because neural hardware may offer a speed advantage of orders of magnitude over other methods; and supervised learning, because of the widespread use and generality of gradient-descent learning algorithms as applied to feedforward networks.< <ETX xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>></ETX>" @default.
- W2103973762 created "2016-06-24" @default.
- W2103973762 creator A5021895423 @default.
- W2103973762 creator A5053123557 @default.
- W2103973762 creator A5056957184 @default.
- W2103973762 creator A5085286540 @default.
- W2103973762 creator A5091627069 @default.
- W2103973762 date "1992-01-01" @default.
- W2103973762 modified "2023-10-11" @default.
- W2103973762 title "Analog VLSI neural networks: implementation issues and examples in optimization and supervised learning" @default.
- W2103973762 cites W1537145117 @default.
- W2103973762 cites W1578671836 @default.
- W2103973762 cites W1976052206 @default.
- W2103973762 cites W1986452040 @default.
- W2103973762 cites W1989463236 @default.
- W2103973762 cites W1992972830 @default.
- W2103973762 cites W1997663353 @default.
- W2103973762 cites W2004075725 @default.
- W2103973762 cites W2005724636 @default.
- W2103973762 cites W2010526455 @default.
- W2103973762 cites W2017053683 @default.
- W2103973762 cites W2020376324 @default.
- W2103973762 cites W2024060531 @default.
- W2103973762 cites W2027444493 @default.
- W2103973762 cites W2032665767 @default.
- W2103973762 cites W2039969435 @default.
- W2103973762 cites W2041609961 @default.
- W2103973762 cites W2042492924 @default.
- W2103973762 cites W2044666552 @default.
- W2103973762 cites W2049986605 @default.
- W2103973762 cites W2053868231 @default.
- W2103973762 cites W2056078008 @default.
- W2103973762 cites W2059240421 @default.
- W2103973762 cites W2069922301 @default.
- W2103973762 cites W2086312927 @default.
- W2103973762 cites W2093637817 @default.
- W2103973762 cites W2094965317 @default.
- W2103973762 cites W2096438284 @default.
- W2103973762 cites W2096471577 @default.
- W2103973762 cites W2103267281 @default.
- W2103973762 cites W2108631315 @default.
- W2103973762 cites W2109811498 @default.
- W2103973762 cites W2111500849 @default.
- W2103973762 cites W2112246162 @default.
- W2103973762 cites W2113361886 @default.
- W2103973762 cites W2115252557 @default.
- W2103973762 cites W2121638644 @default.
- W2103973762 cites W2122332354 @default.
- W2103973762 cites W2131097266 @default.
- W2103973762 cites W2131715036 @default.
- W2103973762 cites W2144219012 @default.
- W2103973762 cites W2144798795 @default.
- W2103973762 cites W2147881255 @default.
- W2103973762 cites W2158969192 @default.
- W2103973762 cites W2162712941 @default.
- W2103973762 cites W2165618253 @default.
- W2103973762 cites W2166095338 @default.
- W2103973762 cites W2167745398 @default.
- W2103973762 cites W2168197497 @default.
- W2103973762 cites W2566616863 @default.
- W2103973762 cites W4245523371 @default.
- W2103973762 cites W2105287191 @default.
- W2103973762 doi "https://doi.org/10.1109/41.170975" @default.
- W2103973762 hasPublicationYear "1992" @default.
- W2103973762 type Work @default.
- W2103973762 sameAs 2103973762 @default.
- W2103973762 citedByCount "28" @default.
- W2103973762 countsByYear W21039737622012 @default.
- W2103973762 countsByYear W21039737622014 @default.
- W2103973762 countsByYear W21039737622015 @default.
- W2103973762 countsByYear W21039737622016 @default.
- W2103973762 countsByYear W21039737622017 @default.
- W2103973762 countsByYear W21039737622018 @default.
- W2103973762 countsByYear W21039737622019 @default.
- W2103973762 crossrefType "journal-article" @default.
- W2103973762 hasAuthorship W2103973762A5021895423 @default.
- W2103973762 hasAuthorship W2103973762A5053123557 @default.
- W2103973762 hasAuthorship W2103973762A5056957184 @default.
- W2103973762 hasAuthorship W2103973762A5085286540 @default.
- W2103973762 hasAuthorship W2103973762A5091627069 @default.
- W2103973762 hasConcept C113775141 @default.
- W2103973762 hasConcept C118524514 @default.
- W2103973762 hasConcept C119857082 @default.
- W2103973762 hasConcept C127413603 @default.
- W2103973762 hasConcept C133731056 @default.
- W2103973762 hasConcept C14580979 @default.
- W2103973762 hasConcept C149635348 @default.
- W2103973762 hasConcept C153258448 @default.
- W2103973762 hasConcept C154945302 @default.
- W2103973762 hasConcept C15744967 @default.
- W2103973762 hasConcept C175291020 @default.
- W2103973762 hasConcept C199360897 @default.
- W2103973762 hasConcept C24326235 @default.
- W2103973762 hasConcept C26713055 @default.
- W2103973762 hasConcept C2780767217 @default.
- W2103973762 hasConcept C38858127 @default.
- W2103973762 hasConcept C41008148 @default.
- W2103973762 hasConcept C46362747 @default.