Matches in SemOpenAlex for { <https://semopenalex.org/work/W2103998432> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2103998432 endingPage "221" @default.
- W2103998432 startingPage "195" @default.
- W2103998432 abstract "Abstract This is a continued analysis on superconvergence of solution derivatives for the Shortley–Weller approximation in Li (Li, Z. C., Yamamoto, T., Fang, Q. ([2003] Li, Z. C., Yamamoto, T. and Fang, Q. 2003. Superconvergence of solution derivatives for the Shortley–Weller difference approximation of Poisson's equation, Part I. Smoothness problems. J. Comp. and Appl. Math., 152(2): 307–333. [Crossref] , [Google Scholar]): Superconvergence of solution derivatives for the Shortley–Weller difference approximation of Poisson's equation, Part I. Smoothness problems. J. Comp. and Appl. Math. 152(2):307–333), which is to explore superconvergence for unbounded derivatives near the boundary. By using the stretching function proposed in Yamamoto (Yamamoto, T. ([2002] Yamamoto, T. 2002. Convergence of consistant and inconsistent finite difference schemes and an acceleration technique. J. Comp. Appl. Math., 140: 849–866. [Crossref], [Web of Science ®] , [Google Scholar]): Convergence of consistant and inconsistent finite difference schemes and an acceleration technique. J. Comp. Appl. Math. 140:849–866), the second order superconvergence for the solution derivatives can be established. Moreover, numerical experiments are provided to support the error analysis made. The analytical approaches in this article are non-trivial, intriguing, and different from Li, Z. C., Yamamoto, T., Fang, Q. ([2003] Li, Z. C., Yamamoto, T. and Fang, Q. 2003. Superconvergence of solution derivatives for the Shortley–Weller difference approximation of Poisson's equation, Part I. Smoothness problems. J. Comp. and Appl. Math., 152(2): 307–333. [Crossref] , [Google Scholar]). This article also provides the superconvergence analysis for the bilinear finite element method and the finite difference method with nine nodes." @default.
- W2103998432 created "2016-06-24" @default.
- W2103998432 creator A5013900548 @default.
- W2103998432 creator A5031859692 @default.
- W2103998432 creator A5054823334 @default.
- W2103998432 creator A5082703737 @default.
- W2103998432 date "2003-01-08" @default.
- W2103998432 modified "2023-10-17" @default.
- W2103998432 title "Superconvergence of Solution Derivatives for the Shortley–Weller Difference Approximation of Poisson's Equation. II. Singularity Problems" @default.
- W2103998432 cites W2066822917 @default.
- W2103998432 cites W2067958799 @default.
- W2103998432 cites W2068067117 @default.
- W2103998432 cites W2069965132 @default.
- W2103998432 cites W2083049168 @default.
- W2103998432 cites W2101862858 @default.
- W2103998432 doi "https://doi.org/10.1081/nfa-120022918" @default.
- W2103998432 hasPublicationYear "2003" @default.
- W2103998432 type Work @default.
- W2103998432 sameAs 2103998432 @default.
- W2103998432 citedByCount "17" @default.
- W2103998432 countsByYear W21039984322014 @default.
- W2103998432 countsByYear W21039984322015 @default.
- W2103998432 countsByYear W21039984322017 @default.
- W2103998432 crossrefType "journal-article" @default.
- W2103998432 hasAuthorship W2103998432A5013900548 @default.
- W2103998432 hasAuthorship W2103998432A5031859692 @default.
- W2103998432 hasAuthorship W2103998432A5054823334 @default.
- W2103998432 hasAuthorship W2103998432A5082703737 @default.
- W2103998432 hasConcept C100906024 @default.
- W2103998432 hasConcept C102634674 @default.
- W2103998432 hasConcept C105795698 @default.
- W2103998432 hasConcept C121332964 @default.
- W2103998432 hasConcept C134306372 @default.
- W2103998432 hasConcept C135628077 @default.
- W2103998432 hasConcept C181330731 @default.
- W2103998432 hasConcept C33923547 @default.
- W2103998432 hasConcept C83295009 @default.
- W2103998432 hasConcept C97355855 @default.
- W2103998432 hasConceptScore W2103998432C100906024 @default.
- W2103998432 hasConceptScore W2103998432C102634674 @default.
- W2103998432 hasConceptScore W2103998432C105795698 @default.
- W2103998432 hasConceptScore W2103998432C121332964 @default.
- W2103998432 hasConceptScore W2103998432C134306372 @default.
- W2103998432 hasConceptScore W2103998432C135628077 @default.
- W2103998432 hasConceptScore W2103998432C181330731 @default.
- W2103998432 hasConceptScore W2103998432C33923547 @default.
- W2103998432 hasConceptScore W2103998432C83295009 @default.
- W2103998432 hasConceptScore W2103998432C97355855 @default.
- W2103998432 hasIssue "3-4" @default.
- W2103998432 hasLocation W21039984321 @default.
- W2103998432 hasOpenAccess W2103998432 @default.
- W2103998432 hasPrimaryLocation W21039984321 @default.
- W2103998432 hasRelatedWork W1173046508 @default.
- W2103998432 hasRelatedWork W1966901555 @default.
- W2103998432 hasRelatedWork W2065771269 @default.
- W2103998432 hasRelatedWork W2077236769 @default.
- W2103998432 hasRelatedWork W2250988630 @default.
- W2103998432 hasRelatedWork W3042913322 @default.
- W2103998432 hasRelatedWork W4237539102 @default.
- W2103998432 hasRelatedWork W4310981524 @default.
- W2103998432 hasRelatedWork W2130880160 @default.
- W2103998432 hasRelatedWork W2611535550 @default.
- W2103998432 hasVolume "24" @default.
- W2103998432 isParatext "false" @default.
- W2103998432 isRetracted "false" @default.
- W2103998432 magId "2103998432" @default.
- W2103998432 workType "article" @default.