Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104003784> ?p ?o ?g. }
- W2104003784 endingPage "92" @default.
- W2104003784 startingPage "43" @default.
- W2104003784 abstract "Double Hurwitz numbers count branched covers of CP 1 with fixed branch points, with simple branching required over all but two points 0 and ∞ , and the branching over 0 and ∞ specified by partitions of the degree (with m and n parts, respectively). Single Hurwitz numbers (or more usually, Hurwitz numbers) have a rich structure, explored by many authors in fields as diverse as algebraic geometry, symplectic geometry, combinatorics, representation theory, and mathematical physics. The remarkable ELSV formula relates single Hurwitz numbers to intersection theory on the moduli space of curves. This connection has led to many consequences, including Okounkov and Pandharipande's proof of Witten's conjecture. In this paper, we determine the structure of double Hurwitz numbers using techniques from geometry, algebra, and representation theory. Our motivation is geometric: we give evidence that double Hurwitz numbers are top intersections on a moduli space of curves with a line bundle (a universal Picard variety). In particular, we prove a piecewise-polynomiality result analogous to that implied by the ELSV formula. In the case m = 1 (complete branching over one point) and n is arbitrary, we conjecture an ELSV-type formula, and show it to be true in genus 0 and 1. The corresponding Witten-type correlation function has a richer structure than that for single Hurwitz numbers, and we show that it satisfies many geometric properties, such as the string and dilaton equations, and an Itzykson–Zuber-style genus expansion ansatz. We give a symmetric function description of the double Hurwitz generating series, which leads to explicit formulae for double Hurwitz numbers with given m and n , as a function of genus. In the case where m is fixed but not necessarily 1, we prove a topological recursion on the corresponding generating series, which leads to closed-form expressions for double Hurwitz numbers and an analogue of the Goulden–Jackson polynomiality conjecture (an early conjectural variant of the ELSV formula). In a later paper (Faber's intersection number conjecture and genus 0 double Hurwitz numbers, 2005, in preparation), the formulae in genus 0 will be shown to be equivalent to the formulae for “top intersections” on the moduli space of smooth curves M g . For example, three formulae we give there will imply Faber's intersection number conjecture (in: Moduli of Curves and Abelian Varieties, Aspects of Mathematics, vol. E33, Vieweg, Braunschweig, 1999, pp. 109–129) in arbitrary genus with up to three points." @default.
- W2104003784 created "2016-06-24" @default.
- W2104003784 creator A5013856193 @default.
- W2104003784 creator A5044873827 @default.
- W2104003784 creator A5090767491 @default.
- W2104003784 date "2005-12-01" @default.
- W2104003784 modified "2023-09-28" @default.
- W2104003784 title "Towards the geometry of double Hurwitz numbers" @default.
- W2104003784 cites W1509692083 @default.
- W2104003784 cites W1510832710 @default.
- W2104003784 cites W1596419715 @default.
- W2104003784 cites W1675774444 @default.
- W2104003784 cites W1831033967 @default.
- W2104003784 cites W1972563066 @default.
- W2104003784 cites W1978440224 @default.
- W2104003784 cites W1985872741 @default.
- W2104003784 cites W2003448897 @default.
- W2104003784 cites W2007830074 @default.
- W2104003784 cites W2021681283 @default.
- W2104003784 cites W2024665291 @default.
- W2104003784 cites W2025031873 @default.
- W2104003784 cites W2039798957 @default.
- W2104003784 cites W2041751801 @default.
- W2104003784 cites W2054875997 @default.
- W2104003784 cites W2056668089 @default.
- W2104003784 cites W2065761068 @default.
- W2104003784 cites W2069628678 @default.
- W2104003784 cites W2078508731 @default.
- W2104003784 cites W2092466119 @default.
- W2104003784 cites W2094223036 @default.
- W2104003784 cites W2094523459 @default.
- W2104003784 cites W2105873423 @default.
- W2104003784 cites W2112156936 @default.
- W2104003784 cites W2112968295 @default.
- W2104003784 cites W2123976986 @default.
- W2104003784 cites W2153535123 @default.
- W2104003784 cites W2154417895 @default.
- W2104003784 cites W2172072638 @default.
- W2104003784 cites W2594607820 @default.
- W2104003784 cites W2997878884 @default.
- W2104003784 cites W3100746112 @default.
- W2104003784 cites W3104501251 @default.
- W2104003784 cites W3121963679 @default.
- W2104003784 cites W372219723 @default.
- W2104003784 doi "https://doi.org/10.1016/j.aim.2005.01.008" @default.
- W2104003784 hasPublicationYear "2005" @default.
- W2104003784 type Work @default.
- W2104003784 sameAs 2104003784 @default.
- W2104003784 citedByCount "124" @default.
- W2104003784 countsByYear W21040037842012 @default.
- W2104003784 countsByYear W21040037842013 @default.
- W2104003784 countsByYear W21040037842014 @default.
- W2104003784 countsByYear W21040037842015 @default.
- W2104003784 countsByYear W21040037842016 @default.
- W2104003784 countsByYear W21040037842017 @default.
- W2104003784 countsByYear W21040037842018 @default.
- W2104003784 countsByYear W21040037842019 @default.
- W2104003784 countsByYear W21040037842020 @default.
- W2104003784 countsByYear W21040037842021 @default.
- W2104003784 countsByYear W21040037842022 @default.
- W2104003784 countsByYear W21040037842023 @default.
- W2104003784 crossrefType "journal-article" @default.
- W2104003784 hasAuthorship W2104003784A5013856193 @default.
- W2104003784 hasAuthorship W2104003784A5044873827 @default.
- W2104003784 hasAuthorship W2104003784A5090767491 @default.
- W2104003784 hasBestOaLocation W21040037842 @default.
- W2104003784 hasConcept C114614502 @default.
- W2104003784 hasConcept C120501884 @default.
- W2104003784 hasConcept C134306372 @default.
- W2104003784 hasConcept C168619227 @default.
- W2104003784 hasConcept C202444582 @default.
- W2104003784 hasConcept C204911207 @default.
- W2104003784 hasConcept C2524010 @default.
- W2104003784 hasConcept C2780990831 @default.
- W2104003784 hasConcept C33923547 @default.
- W2104003784 hasConcept C73373263 @default.
- W2104003784 hasConcept C90119067 @default.
- W2104003784 hasConceptScore W2104003784C114614502 @default.
- W2104003784 hasConceptScore W2104003784C120501884 @default.
- W2104003784 hasConceptScore W2104003784C134306372 @default.
- W2104003784 hasConceptScore W2104003784C168619227 @default.
- W2104003784 hasConceptScore W2104003784C202444582 @default.
- W2104003784 hasConceptScore W2104003784C204911207 @default.
- W2104003784 hasConceptScore W2104003784C2524010 @default.
- W2104003784 hasConceptScore W2104003784C2780990831 @default.
- W2104003784 hasConceptScore W2104003784C33923547 @default.
- W2104003784 hasConceptScore W2104003784C73373263 @default.
- W2104003784 hasConceptScore W2104003784C90119067 @default.
- W2104003784 hasIssue "1" @default.
- W2104003784 hasLocation W21040037841 @default.
- W2104003784 hasLocation W21040037842 @default.
- W2104003784 hasLocation W21040037843 @default.
- W2104003784 hasOpenAccess W2104003784 @default.
- W2104003784 hasPrimaryLocation W21040037841 @default.
- W2104003784 hasRelatedWork W1516729419 @default.
- W2104003784 hasRelatedWork W1972523355 @default.
- W2104003784 hasRelatedWork W2073994398 @default.
- W2104003784 hasRelatedWork W2104003784 @default.