Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104098968> ?p ?o ?g. }
- W2104098968 endingPage "224" @default.
- W2104098968 startingPage "212" @default.
- W2104098968 abstract "Knowledge of the diffusion domain is of primary importance for age interpretation in noble gas thermochronometers. We have developed a Monte Carlo method to solve the diffusion equation in three-dimensional space and have used it to examine the effect of realistic crystal geometries and anisotropy on noble gas diffusion. The method is based on the simulation of Brownian motion with a modified distribution of collision distances and with a variable mean free path. This approach drastically reduces calculation time while remaining accurate. This original approach is able to treat isotropic and anisotropic diffusion, any 3D shape, ejection and zonation. A code simulating production, ejection and diffusion from the grain to the external medium has been implemented to compute helium ages of minerals subjected to temperature histories. In parallel, another module has been developed to simulate diffusion experiments and diffusion coefficient determination for all types of He profiles in a grain (homogenous, depleted edge due to ejection, heterogeneous profile due to previous diffusion, etc). Both types of simulations are suitable for isotopic and anisotropic diffusion; we develop examples for apatite and zircon (U–Th)/He thermochronology but the method can be applied to any other noble gas thermochronometer. The Monte Carlo simulation reproduces the He age variation obtained by other calculation methods for simple geometries and for well-known thermal histories, demonstrating the viability of the tool. In the case of isotropic diffusion, we show that generally even for realistic shapes with many ridges the He age resulting from the diffusion can be well calculated by assuming a spherical shape of the same surface/volume (S/V) ratio. The only requirement for adequate representation of grains by spheres is thus accurate knowledge of their true shapes and dimensions. For anisotropic diffusion, we introduce a new concept termed “active radius”, which describes the complex anisotropic diffusion process by isotropic diffusion in a sphere. In this sense, the active radius can be seen as an extension of the sphere-equivalent radius to the anisotropic case. The active radius can be computed for any geometrical shape without Monte Carlo sampling, and a separate simple code is made available for its computation." @default.
- W2104098968 created "2016-06-24" @default.
- W2104098968 creator A5028596418 @default.
- W2104098968 creator A5046290541 @default.
- W2104098968 date "2010-05-01" @default.
- W2104098968 modified "2023-10-18" @default.
- W2104098968 title "A Monte Carlo approach to diffusion applied to noble gas/helium thermochronology" @default.
- W2104098968 cites W1963617273 @default.
- W2104098968 cites W1963910647 @default.
- W2104098968 cites W1978821747 @default.
- W2104098968 cites W1982695274 @default.
- W2104098968 cites W2010891459 @default.
- W2104098968 cites W2032640387 @default.
- W2104098968 cites W2034070765 @default.
- W2104098968 cites W2043708004 @default.
- W2104098968 cites W2046062665 @default.
- W2104098968 cites W2053381713 @default.
- W2104098968 cites W2055517641 @default.
- W2104098968 cites W2062168797 @default.
- W2104098968 cites W2065919024 @default.
- W2104098968 cites W2066123425 @default.
- W2104098968 cites W2070552431 @default.
- W2104098968 cites W2078313687 @default.
- W2104098968 cites W2083260737 @default.
- W2104098968 cites W2096773693 @default.
- W2104098968 cites W2145180142 @default.
- W2104098968 cites W4242308926 @default.
- W2104098968 cites W4376848192 @default.
- W2104098968 doi "https://doi.org/10.1016/j.chemgeo.2010.02.023" @default.
- W2104098968 hasPublicationYear "2010" @default.
- W2104098968 type Work @default.
- W2104098968 sameAs 2104098968 @default.
- W2104098968 citedByCount "85" @default.
- W2104098968 countsByYear W21040989682012 @default.
- W2104098968 countsByYear W21040989682013 @default.
- W2104098968 countsByYear W21040989682014 @default.
- W2104098968 countsByYear W21040989682015 @default.
- W2104098968 countsByYear W21040989682016 @default.
- W2104098968 countsByYear W21040989682017 @default.
- W2104098968 countsByYear W21040989682018 @default.
- W2104098968 countsByYear W21040989682019 @default.
- W2104098968 countsByYear W21040989682020 @default.
- W2104098968 countsByYear W21040989682021 @default.
- W2104098968 countsByYear W21040989682022 @default.
- W2104098968 countsByYear W21040989682023 @default.
- W2104098968 crossrefType "journal-article" @default.
- W2104098968 hasAuthorship W2104098968A5028596418 @default.
- W2104098968 hasAuthorship W2104098968A5046290541 @default.
- W2104098968 hasConcept C105795698 @default.
- W2104098968 hasConcept C120665830 @default.
- W2104098968 hasConcept C121332964 @default.
- W2104098968 hasConcept C126838900 @default.
- W2104098968 hasConcept C127313418 @default.
- W2104098968 hasConcept C136264566 @default.
- W2104098968 hasConcept C143409427 @default.
- W2104098968 hasConcept C162324750 @default.
- W2104098968 hasConcept C184050105 @default.
- W2104098968 hasConcept C185544564 @default.
- W2104098968 hasConcept C192562407 @default.
- W2104098968 hasConcept C19499675 @default.
- W2104098968 hasConcept C195963834 @default.
- W2104098968 hasConcept C203504353 @default.
- W2104098968 hasConcept C2778849375 @default.
- W2104098968 hasConcept C2780378061 @default.
- W2104098968 hasConcept C33923547 @default.
- W2104098968 hasConcept C45786274 @default.
- W2104098968 hasConcept C571446 @default.
- W2104098968 hasConcept C69357855 @default.
- W2104098968 hasConcept C70816921 @default.
- W2104098968 hasConcept C71924100 @default.
- W2104098968 hasConcept C85725439 @default.
- W2104098968 hasConcept C97355855 @default.
- W2104098968 hasConceptScore W2104098968C105795698 @default.
- W2104098968 hasConceptScore W2104098968C120665830 @default.
- W2104098968 hasConceptScore W2104098968C121332964 @default.
- W2104098968 hasConceptScore W2104098968C126838900 @default.
- W2104098968 hasConceptScore W2104098968C127313418 @default.
- W2104098968 hasConceptScore W2104098968C136264566 @default.
- W2104098968 hasConceptScore W2104098968C143409427 @default.
- W2104098968 hasConceptScore W2104098968C162324750 @default.
- W2104098968 hasConceptScore W2104098968C184050105 @default.
- W2104098968 hasConceptScore W2104098968C185544564 @default.
- W2104098968 hasConceptScore W2104098968C192562407 @default.
- W2104098968 hasConceptScore W2104098968C19499675 @default.
- W2104098968 hasConceptScore W2104098968C195963834 @default.
- W2104098968 hasConceptScore W2104098968C203504353 @default.
- W2104098968 hasConceptScore W2104098968C2778849375 @default.
- W2104098968 hasConceptScore W2104098968C2780378061 @default.
- W2104098968 hasConceptScore W2104098968C33923547 @default.
- W2104098968 hasConceptScore W2104098968C45786274 @default.
- W2104098968 hasConceptScore W2104098968C571446 @default.
- W2104098968 hasConceptScore W2104098968C69357855 @default.
- W2104098968 hasConceptScore W2104098968C70816921 @default.
- W2104098968 hasConceptScore W2104098968C71924100 @default.
- W2104098968 hasConceptScore W2104098968C85725439 @default.
- W2104098968 hasConceptScore W2104098968C97355855 @default.
- W2104098968 hasIssue "3-4" @default.
- W2104098968 hasLocation W21040989681 @default.