Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104144964> ?p ?o ?g. }
- W2104144964 endingPage "17" @default.
- W2104144964 startingPage "1" @default.
- W2104144964 abstract "Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches." @default.
- W2104144964 created "2016-06-24" @default.
- W2104144964 creator A5011048500 @default.
- W2104144964 creator A5040440605 @default.
- W2104144964 creator A5056881797 @default.
- W2104144964 date "2015-05-01" @default.
- W2104144964 modified "2023-09-25" @default.
- W2104144964 title "Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning" @default.
- W2104144964 cites W189327743 @default.
- W2104144964 cites W1904464160 @default.
- W2104144964 cites W1969198379 @default.
- W2104144964 cites W1997201895 @default.
- W2104144964 cites W1998635907 @default.
- W2104144964 cites W2003217181 @default.
- W2104144964 cites W200673309 @default.
- W2104144964 cites W2013854956 @default.
- W2104144964 cites W2018096278 @default.
- W2104144964 cites W2019863495 @default.
- W2104144964 cites W2020400084 @default.
- W2104144964 cites W2028879127 @default.
- W2104144964 cites W2053186076 @default.
- W2104144964 cites W2069959554 @default.
- W2104144964 cites W2077776048 @default.
- W2104144964 cites W2079558799 @default.
- W2104144964 cites W2085192601 @default.
- W2104144964 cites W2103972604 @default.
- W2104144964 cites W2104990616 @default.
- W2104144964 cites W2107799335 @default.
- W2104144964 cites W2108119513 @default.
- W2104144964 cites W2113590298 @default.
- W2104144964 cites W2135046866 @default.
- W2104144964 cites W2136635436 @default.
- W2104144964 cites W2140245639 @default.
- W2104144964 cites W2145962650 @default.
- W2104144964 cites W2147021384 @default.
- W2104144964 cites W2160915541 @default.
- W2104144964 cites W2161674011 @default.
- W2104144964 cites W2171898484 @default.
- W2104144964 cites W2963689635 @default.
- W2104144964 cites W38891395 @default.
- W2104144964 doi "https://doi.org/10.1016/j.neunet.2015.01.001" @default.
- W2104144964 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25634552" @default.
- W2104144964 hasPublicationYear "2015" @default.
- W2104144964 type Work @default.
- W2104144964 sameAs 2104144964 @default.
- W2104144964 citedByCount "39" @default.
- W2104144964 countsByYear W21041449642016 @default.
- W2104144964 countsByYear W21041449642017 @default.
- W2104144964 countsByYear W21041449642018 @default.
- W2104144964 countsByYear W21041449642019 @default.
- W2104144964 countsByYear W21041449642020 @default.
- W2104144964 countsByYear W21041449642021 @default.
- W2104144964 countsByYear W21041449642022 @default.
- W2104144964 countsByYear W21041449642023 @default.
- W2104144964 crossrefType "journal-article" @default.
- W2104144964 hasAuthorship W2104144964A5011048500 @default.
- W2104144964 hasAuthorship W2104144964A5040440605 @default.
- W2104144964 hasAuthorship W2104144964A5056881797 @default.
- W2104144964 hasConcept C105611402 @default.
- W2104144964 hasConcept C114614502 @default.
- W2104144964 hasConcept C116409475 @default.
- W2104144964 hasConcept C119857082 @default.
- W2104144964 hasConcept C124066611 @default.
- W2104144964 hasConcept C127413603 @default.
- W2104144964 hasConcept C132525143 @default.
- W2104144964 hasConcept C134306372 @default.
- W2104144964 hasConcept C151876577 @default.
- W2104144964 hasConcept C153120616 @default.
- W2104144964 hasConcept C153180895 @default.
- W2104144964 hasConcept C154945302 @default.
- W2104144964 hasConcept C157157409 @default.
- W2104144964 hasConcept C164226766 @default.
- W2104144964 hasConcept C17744445 @default.
- W2104144964 hasConcept C199539241 @default.
- W2104144964 hasConcept C21080849 @default.
- W2104144964 hasConcept C2776359362 @default.
- W2104144964 hasConcept C33923547 @default.
- W2104144964 hasConcept C41008148 @default.
- W2104144964 hasConcept C529865628 @default.
- W2104144964 hasConcept C70518039 @default.
- W2104144964 hasConcept C73555534 @default.
- W2104144964 hasConcept C78519656 @default.
- W2104144964 hasConcept C80444323 @default.
- W2104144964 hasConcept C94625758 @default.
- W2104144964 hasConcept C97931131 @default.
- W2104144964 hasConceptScore W2104144964C105611402 @default.
- W2104144964 hasConceptScore W2104144964C114614502 @default.
- W2104144964 hasConceptScore W2104144964C116409475 @default.
- W2104144964 hasConceptScore W2104144964C119857082 @default.
- W2104144964 hasConceptScore W2104144964C124066611 @default.
- W2104144964 hasConceptScore W2104144964C127413603 @default.
- W2104144964 hasConceptScore W2104144964C132525143 @default.
- W2104144964 hasConceptScore W2104144964C134306372 @default.
- W2104144964 hasConceptScore W2104144964C151876577 @default.
- W2104144964 hasConceptScore W2104144964C153120616 @default.
- W2104144964 hasConceptScore W2104144964C153180895 @default.
- W2104144964 hasConceptScore W2104144964C154945302 @default.
- W2104144964 hasConceptScore W2104144964C157157409 @default.