Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104156951> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2104156951 abstract "We show that if a Hopf algebra has finite dimensional primitives and a primitive lies in arbitrarily long finite sequences of divided powers then it lies in an infinite sequence of divided powers. Introduction. K. Newman has shown us a counter-example to [3, Theorem 2, p. 521]. The theorem states that if H is a cocommutative Hopf algebra over a perfect field k of characteristic p > 0 and k is the unique simple subcoalgebra of H then a primitive element 1x of Hlies in a sequence of divided powers 1 = Ox, 1x, . . . pn+l lx if and only if 1x has coheight n, for n = 0, 1, .. ., oo. (The sequence should be considered infinite if n = oo.) The proof given in [3, p. 524] correctly shows that the existence of the sequence of divided powers implies that 1x has the desired coheight for all n. The proof there also correctly shows that for finite n if lx has coheight n then the desired sequence of divided powers exists. The error seems to be the assertion K1 H1/(U ker Fi) [3, p. 254, lines 23-24]. Newman's example shows that 1x may have infinite coheight-so lies in arbitrarily long finite sequences of divided powers-and yet 1x lies in no infinite sequence of divided powers. We show here that with the further assumption that the primitives of H are finite dimensional then 1x having infinite coheight implies that 1x lies in an infinite sequence of divided powers. This result is important because it plays a key role in the proof of Jacobson's conjecture in [1]. We explain this in more detail at the end of the present paper. 1. Suppose C is a cocommutative coalgebra with a unique simple subcoalgebra which is one dimensional. We identify this simple subcoalgebra with k and so consider kc C. Then the primitive elements of C, P(C){c E C I Ac =1 0 c + c 0 1}. HEYNEMAN'S THEOREM. If dim P(C) < oo then C satisfies the minimum condition and descending chain condition for subcoalgebras. Proof. For a vector space U the coalgebra Sh(U) is defined in [4, p. 244, p. 254]. By [4, p. 254, 12.1.1 ] there is a finite-dimensional space U and an injective coalgebra Received by the editors April 7, 1970. AMS 1969 subject classifications. Primary 1452; Secondary 1450." @default.
- W2104156951 created "2016-06-24" @default.
- W2104156951 creator A5061486704 @default.
- W2104156951 date "1971-01-01" @default.
- W2104156951 modified "2023-09-26" @default.
- W2104156951 title "Weakening a theorem on divided powers" @default.
- W2104156951 cites W2007563244 @default.
- W2104156951 cites W2065929549 @default.
- W2104156951 doi "https://doi.org/10.1090/s0002-9947-1971-0279162-1" @default.
- W2104156951 hasPublicationYear "1971" @default.
- W2104156951 type Work @default.
- W2104156951 sameAs 2104156951 @default.
- W2104156951 citedByCount "8" @default.
- W2104156951 crossrefType "journal-article" @default.
- W2104156951 hasAuthorship W2104156951A5061486704 @default.
- W2104156951 hasBestOaLocation W21041569511 @default.
- W2104156951 hasConcept C111472728 @default.
- W2104156951 hasConcept C114614502 @default.
- W2104156951 hasConcept C118615104 @default.
- W2104156951 hasConcept C136119220 @default.
- W2104156951 hasConcept C138885662 @default.
- W2104156951 hasConcept C202444582 @default.
- W2104156951 hasConcept C2778112365 @default.
- W2104156951 hasConcept C2780586882 @default.
- W2104156951 hasConcept C29712632 @default.
- W2104156951 hasConcept C33923547 @default.
- W2104156951 hasConcept C54355233 @default.
- W2104156951 hasConcept C77926391 @default.
- W2104156951 hasConcept C86803240 @default.
- W2104156951 hasConcept C9652623 @default.
- W2104156951 hasConceptScore W2104156951C111472728 @default.
- W2104156951 hasConceptScore W2104156951C114614502 @default.
- W2104156951 hasConceptScore W2104156951C118615104 @default.
- W2104156951 hasConceptScore W2104156951C136119220 @default.
- W2104156951 hasConceptScore W2104156951C138885662 @default.
- W2104156951 hasConceptScore W2104156951C202444582 @default.
- W2104156951 hasConceptScore W2104156951C2778112365 @default.
- W2104156951 hasConceptScore W2104156951C2780586882 @default.
- W2104156951 hasConceptScore W2104156951C29712632 @default.
- W2104156951 hasConceptScore W2104156951C33923547 @default.
- W2104156951 hasConceptScore W2104156951C54355233 @default.
- W2104156951 hasConceptScore W2104156951C77926391 @default.
- W2104156951 hasConceptScore W2104156951C86803240 @default.
- W2104156951 hasConceptScore W2104156951C9652623 @default.
- W2104156951 hasLocation W21041569511 @default.
- W2104156951 hasOpenAccess W2104156951 @default.
- W2104156951 hasPrimaryLocation W21041569511 @default.
- W2104156951 hasRelatedWork W114844000 @default.
- W2104156951 hasRelatedWork W1592010664 @default.
- W2104156951 hasRelatedWork W161581914 @default.
- W2104156951 hasRelatedWork W1982361238 @default.
- W2104156951 hasRelatedWork W2026713358 @default.
- W2104156951 hasRelatedWork W2046451002 @default.
- W2104156951 hasRelatedWork W2058515636 @default.
- W2104156951 hasRelatedWork W2065929549 @default.
- W2104156951 hasRelatedWork W2183729011 @default.
- W2104156951 hasRelatedWork W2299824777 @default.
- W2104156951 hasRelatedWork W2315096889 @default.
- W2104156951 hasRelatedWork W2950202305 @default.
- W2104156951 hasRelatedWork W2963394408 @default.
- W2104156951 hasRelatedWork W2963970997 @default.
- W2104156951 hasRelatedWork W3015140283 @default.
- W2104156951 hasRelatedWork W3102714512 @default.
- W2104156951 hasRelatedWork W3103984453 @default.
- W2104156951 hasRelatedWork W3185798863 @default.
- W2104156951 hasRelatedWork W35249384 @default.
- W2104156951 hasRelatedWork W599461980 @default.
- W2104156951 isParatext "false" @default.
- W2104156951 isRetracted "false" @default.
- W2104156951 magId "2104156951" @default.
- W2104156951 workType "article" @default.