Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104240047> ?p ?o ?g. }
- W2104240047 abstract "This work seeks to develop a methodology for identifying reliable biomarkers of disease activity, progression and outcome through the identification of significant associations between high-throughput flow cytometry (FC) data and interstitial lung disease (ILD) - a systemic sclerosis (SSc, or scleroderma) clinical phenotype which is the leading cause of morbidity and mortality in SSc. A specific aim of the work involves developing a clinically useful screening tool that could yield accurate assessments of disease state such as the risk or presence of SSc-ILD, the activity of lung involvement and the likelihood to respond to therapeutic intervention. Ultimately this instrument could facilitate a refined stratification of SSc patients into clinically relevant subsets at the time of diagnosis and subsequently during the course of the disease and thus help in preventing bad outcomes from disease progression or unnecessary treatment side effects. The methods utilized in the work involve: (1) clinical and peripheral blood flow cytometry data (Immune Response In Scleroderma, IRIS) from consented patients followed at the Johns Hopkins Scleroderma Center. (2) machine learning (Conditional Random Forests - CRF) coupled with Gene Set Enrichment Analysis (GSEA) to identify subsets of FC variables that are highly effective in classifying ILD patients; and (3) stochastic simulation to design, train and validate ILD risk screening tools. Our hybrid analysis approach (CRF-GSEA) proved successful in predicting SSc patient ILD status with a high degree of success (>82 % correct classification in validation; 79 patients in the training data set, 40 patients in the validation data set). IRIS flow cytometry data provides useful information in assessing the ILD status of SSc patients. Our new approach combining Conditional Random Forests and Gene Set Enrichment Analysis was successful in identifying a subset of flow cytometry variables to create a screening tool that proved effective in correctly identifying ILD patients in the training and validation data sets. From a somewhat broader perspective, the identification of subsets of flow cytometry variables that exhibit coordinated movement (i.e., multi-variable up or down regulation) may lead to insights into possible effector pathways and thereby improve the state of knowledge of systemic sclerosis pathogenesis." @default.
- W2104240047 created "2016-06-24" @default.
- W2104240047 creator A5008093033 @default.
- W2104240047 creator A5008833389 @default.
- W2104240047 creator A5009044856 @default.
- W2104240047 creator A5009697728 @default.
- W2104240047 creator A5013908886 @default.
- W2104240047 creator A5062420029 @default.
- W2104240047 creator A5075393733 @default.
- W2104240047 date "2015-09-15" @default.
- W2104240047 modified "2023-10-18" @default.
- W2104240047 title "A methodology for exploring biomarker – phenotype associations: application to flow cytometry data and systemic sclerosis clinical manifestations" @default.
- W2104240047 cites W117928322 @default.
- W2104240047 cites W1602504768 @default.
- W2104240047 cites W1736835472 @default.
- W2104240047 cites W1767380958 @default.
- W2104240047 cites W1843679466 @default.
- W2104240047 cites W1964592252 @default.
- W2104240047 cites W1971366332 @default.
- W2104240047 cites W1971696904 @default.
- W2104240047 cites W1979129905 @default.
- W2104240047 cites W1990258962 @default.
- W2104240047 cites W2000424161 @default.
- W2104240047 cites W2007626585 @default.
- W2104240047 cites W2017008233 @default.
- W2104240047 cites W2018708063 @default.
- W2104240047 cites W2019212826 @default.
- W2104240047 cites W2023898707 @default.
- W2104240047 cites W2025886100 @default.
- W2104240047 cites W2040213563 @default.
- W2104240047 cites W2042096696 @default.
- W2104240047 cites W2043003438 @default.
- W2104240047 cites W2045257928 @default.
- W2104240047 cites W2053145197 @default.
- W2104240047 cites W2053553238 @default.
- W2104240047 cites W2059127777 @default.
- W2104240047 cites W2060880575 @default.
- W2104240047 cites W2062418628 @default.
- W2104240047 cites W2067038367 @default.
- W2104240047 cites W2072754909 @default.
- W2104240047 cites W2075238704 @default.
- W2104240047 cites W2075832988 @default.
- W2104240047 cites W2088024559 @default.
- W2104240047 cites W2089468765 @default.
- W2104240047 cites W2094386684 @default.
- W2104240047 cites W2102074241 @default.
- W2104240047 cites W2104960492 @default.
- W2104240047 cites W2108678383 @default.
- W2104240047 cites W2115380778 @default.
- W2104240047 cites W2115637648 @default.
- W2104240047 cites W2119315254 @default.
- W2104240047 cites W2123106337 @default.
- W2104240047 cites W2123998733 @default.
- W2104240047 cites W2130410032 @default.
- W2104240047 cites W2130906904 @default.
- W2104240047 cites W2139036189 @default.
- W2104240047 cites W2142345987 @default.
- W2104240047 cites W2143481518 @default.
- W2104240047 cites W2145976239 @default.
- W2104240047 cites W2156332695 @default.
- W2104240047 cites W2159835316 @default.
- W2104240047 cites W2165080652 @default.
- W2104240047 cites W2312405350 @default.
- W2104240047 cites W2318308674 @default.
- W2104240047 cites W2476651486 @default.
- W2104240047 cites W2479224257 @default.
- W2104240047 cites W2608409802 @default.
- W2104240047 cites W2911964244 @default.
- W2104240047 cites W3101608900 @default.
- W2104240047 cites W4233799263 @default.
- W2104240047 cites W4246090800 @default.
- W2104240047 cites W4249200669 @default.
- W2104240047 doi "https://doi.org/10.1186/s12859-015-0722-x" @default.
- W2104240047 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4571079" @default.
- W2104240047 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26373409" @default.
- W2104240047 hasPublicationYear "2015" @default.
- W2104240047 type Work @default.
- W2104240047 sameAs 2104240047 @default.
- W2104240047 citedByCount "7" @default.
- W2104240047 countsByYear W21042400472016 @default.
- W2104240047 countsByYear W21042400472017 @default.
- W2104240047 countsByYear W21042400472020 @default.
- W2104240047 countsByYear W21042400472021 @default.
- W2104240047 crossrefType "journal-article" @default.
- W2104240047 hasAuthorship W2104240047A5008093033 @default.
- W2104240047 hasAuthorship W2104240047A5008833389 @default.
- W2104240047 hasAuthorship W2104240047A5009044856 @default.
- W2104240047 hasAuthorship W2104240047A5009697728 @default.
- W2104240047 hasAuthorship W2104240047A5013908886 @default.
- W2104240047 hasAuthorship W2104240047A5062420029 @default.
- W2104240047 hasAuthorship W2104240047A5075393733 @default.
- W2104240047 hasBestOaLocation W21042400471 @default.
- W2104240047 hasConcept C126322002 @default.
- W2104240047 hasConcept C143998085 @default.
- W2104240047 hasConcept C180032290 @default.
- W2104240047 hasConcept C203014093 @default.
- W2104240047 hasConcept C2779134260 @default.
- W2104240047 hasConcept C2779967694 @default.
- W2104240047 hasConcept C2781197716 @default.
- W2104240047 hasConcept C553184892 @default.