Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104371080> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2104371080 abstract "Many vision problems have been formulated as energy minimization problems and there have been significant advances in energy minimization algorithms. The most widely-used energy minimization algorithms include graph cuts, belief propagation and tree-reweighted message passing. Although they have obtained good results, they are still unsatisfactory when it comes to more difficult MRF problems such as non-submodular energy functions, highly connected MRFs, and high-order clique potentials. There have also been other approaches, known as stochastic sampling-based algorithms, which include simulated annealing, Markov chain Monte Carlo and population based Markov chain Monte Carlo. They are applicable to any general energy models but they are usually slower than deterministic methods. In this paper, we propose new algorithms which elegantly combine stochastic and deterministic methods. Sampling-based methods are boosted by deterministic methods so that they can rapidly move to lower energy states and easily jump over energy barriers. In different point of view, the sampling-based method prevents deterministic methods from getting stuck at local minima. Consequently, a combination of both approaches substantially increases the quality of the solutions. We present a thorough analysis of the proposed methods in synthetic MRF problems by controlling the hardness of the problems. We also demonstrate experimental results for the photomontage problem which is the most difficult one among the standard MRF benchmark problems." @default.
- W2104371080 created "2016-06-24" @default.
- W2104371080 creator A5008717958 @default.
- W2104371080 creator A5046504049 @default.
- W2104371080 date "2009-06-01" @default.
- W2104371080 modified "2023-09-25" @default.
- W2104371080 title "Markov Chain Monte Carlo combined with deterministic methods for Markov random field optimization" @default.
- W2104371080 cites W1966158039 @default.
- W2104371080 cites W2074078071 @default.
- W2104371080 cites W2095783300 @default.
- W2104371080 cites W2101309634 @default.
- W2104371080 cites W2107884096 @default.
- W2104371080 cites W2108619558 @default.
- W2104371080 cites W2113137767 @default.
- W2104371080 cites W2120272360 @default.
- W2104371080 cites W2126290786 @default.
- W2104371080 cites W2137117160 @default.
- W2104371080 cites W2143516773 @default.
- W2104371080 cites W2164918853 @default.
- W2104371080 cites W2166925018 @default.
- W2104371080 cites W2169282664 @default.
- W2104371080 doi "https://doi.org/10.1109/cvpr.2009.5206504" @default.
- W2104371080 hasPublicationYear "2009" @default.
- W2104371080 type Work @default.
- W2104371080 sameAs 2104371080 @default.
- W2104371080 citedByCount "6" @default.
- W2104371080 countsByYear W21043710802014 @default.
- W2104371080 countsByYear W21043710802016 @default.
- W2104371080 countsByYear W21043710802022 @default.
- W2104371080 crossrefType "proceedings-article" @default.
- W2104371080 hasAuthorship W2104371080A5008717958 @default.
- W2104371080 hasAuthorship W2104371080A5046504049 @default.
- W2104371080 hasBestOaLocation W21043710802 @default.
- W2104371080 hasConcept C105795698 @default.
- W2104371080 hasConcept C107673813 @default.
- W2104371080 hasConcept C111350023 @default.
- W2104371080 hasConcept C11413529 @default.
- W2104371080 hasConcept C119857082 @default.
- W2104371080 hasConcept C124504099 @default.
- W2104371080 hasConcept C126255220 @default.
- W2104371080 hasConcept C126980161 @default.
- W2104371080 hasConcept C134306372 @default.
- W2104371080 hasConcept C154945302 @default.
- W2104371080 hasConcept C186633575 @default.
- W2104371080 hasConcept C19499675 @default.
- W2104371080 hasConcept C2778045648 @default.
- W2104371080 hasConcept C33923547 @default.
- W2104371080 hasConcept C41008148 @default.
- W2104371080 hasConcept C89600930 @default.
- W2104371080 hasConcept C98763669 @default.
- W2104371080 hasConceptScore W2104371080C105795698 @default.
- W2104371080 hasConceptScore W2104371080C107673813 @default.
- W2104371080 hasConceptScore W2104371080C111350023 @default.
- W2104371080 hasConceptScore W2104371080C11413529 @default.
- W2104371080 hasConceptScore W2104371080C119857082 @default.
- W2104371080 hasConceptScore W2104371080C124504099 @default.
- W2104371080 hasConceptScore W2104371080C126255220 @default.
- W2104371080 hasConceptScore W2104371080C126980161 @default.
- W2104371080 hasConceptScore W2104371080C134306372 @default.
- W2104371080 hasConceptScore W2104371080C154945302 @default.
- W2104371080 hasConceptScore W2104371080C186633575 @default.
- W2104371080 hasConceptScore W2104371080C19499675 @default.
- W2104371080 hasConceptScore W2104371080C2778045648 @default.
- W2104371080 hasConceptScore W2104371080C33923547 @default.
- W2104371080 hasConceptScore W2104371080C41008148 @default.
- W2104371080 hasConceptScore W2104371080C89600930 @default.
- W2104371080 hasConceptScore W2104371080C98763669 @default.
- W2104371080 hasLocation W21043710801 @default.
- W2104371080 hasLocation W21043710802 @default.
- W2104371080 hasOpenAccess W2104371080 @default.
- W2104371080 hasPrimaryLocation W21043710801 @default.
- W2104371080 hasRelatedWork W1659965374 @default.
- W2104371080 hasRelatedWork W2001455358 @default.
- W2104371080 hasRelatedWork W2035564297 @default.
- W2104371080 hasRelatedWork W2047170449 @default.
- W2104371080 hasRelatedWork W2171860377 @default.
- W2104371080 hasRelatedWork W2316430615 @default.
- W2104371080 hasRelatedWork W2545439901 @default.
- W2104371080 hasRelatedWork W2732716906 @default.
- W2104371080 hasRelatedWork W32751321 @default.
- W2104371080 hasRelatedWork W49402502 @default.
- W2104371080 isParatext "false" @default.
- W2104371080 isRetracted "false" @default.
- W2104371080 magId "2104371080" @default.
- W2104371080 workType "article" @default.