Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104411075> ?p ?o ?g. }
- W2104411075 endingPage "378" @default.
- W2104411075 startingPage "367" @default.
- W2104411075 abstract "Distant supervision algorithms learn information extraction models given only large readily available databases and text collections. Most previous work has used heuristics for generating labeled data, for example assuming that facts not contained in the database are not mentioned in the text, and facts in the database must be mentioned at least once. In this paper, we propose a new latent-variable approach that models missing data. This provides a natural way to incorporate side information, for instance modeling the intuition that text will often mention rare entities which are likely to be missing in the database. Despite the added complexity introduced by reasoning about missing data, we demonstrate that a carefully designed local search approach to inference is very accurate and scales to large datasets. Experiments demonstrate improved performance for binary and unary relation extraction when compared to learning with heuristic labels, including on average a 27% increase in area under the precision recall curve in the binary case." @default.
- W2104411075 created "2016-06-24" @default.
- W2104411075 creator A5039096905 @default.
- W2104411075 creator A5067919401 @default.
- W2104411075 creator A5083075229 @default.
- W2104411075 date "2013-12-01" @default.
- W2104411075 modified "2023-09-26" @default.
- W2104411075 title "Modeling Missing Data in Distant Supervision for Information Extraction" @default.
- W2104411075 cites W125575914 @default.
- W2104411075 cites W1497611705 @default.
- W2104411075 cites W1511986666 @default.
- W2104411075 cites W1512387364 @default.
- W2104411075 cites W1604644367 @default.
- W2104411075 cites W174427690 @default.
- W2104411075 cites W1852412531 @default.
- W2104411075 cites W1868009147 @default.
- W2104411075 cites W1954715867 @default.
- W2104411075 cites W2008652694 @default.
- W2104411075 cites W2044758663 @default.
- W2104411075 cites W2045656233 @default.
- W2104411075 cites W2103931177 @default.
- W2104411075 cites W2107598941 @default.
- W2104411075 cites W2110119381 @default.
- W2104411075 cites W2111742432 @default.
- W2104411075 cites W2122410182 @default.
- W2104411075 cites W2132679783 @default.
- W2104411075 cites W2138288827 @default.
- W2104411075 cites W2143564602 @default.
- W2104411075 cites W2146304342 @default.
- W2104411075 cites W2149713870 @default.
- W2104411075 cites W2150588363 @default.
- W2104411075 cites W2152336115 @default.
- W2104411075 cites W2153848201 @default.
- W2104411075 cites W2250265269 @default.
- W2104411075 cites W2251960799 @default.
- W2104411075 cites W2479174951 @default.
- W2104411075 cites W2603519596 @default.
- W2104411075 cites W2785349534 @default.
- W2104411075 cites W1905066734 @default.
- W2104411075 doi "https://doi.org/10.1162/tacl_a_00234" @default.
- W2104411075 hasPublicationYear "2013" @default.
- W2104411075 type Work @default.
- W2104411075 sameAs 2104411075 @default.
- W2104411075 citedByCount "88" @default.
- W2104411075 countsByYear W21044110752014 @default.
- W2104411075 countsByYear W21044110752015 @default.
- W2104411075 countsByYear W21044110752016 @default.
- W2104411075 countsByYear W21044110752017 @default.
- W2104411075 countsByYear W21044110752018 @default.
- W2104411075 countsByYear W21044110752019 @default.
- W2104411075 countsByYear W21044110752020 @default.
- W2104411075 countsByYear W21044110752021 @default.
- W2104411075 countsByYear W21044110752022 @default.
- W2104411075 crossrefType "journal-article" @default.
- W2104411075 hasAuthorship W2104411075A5039096905 @default.
- W2104411075 hasAuthorship W2104411075A5067919401 @default.
- W2104411075 hasAuthorship W2104411075A5083075229 @default.
- W2104411075 hasBestOaLocation W21044110751 @default.
- W2104411075 hasConcept C111919701 @default.
- W2104411075 hasConcept C114614502 @default.
- W2104411075 hasConcept C119857082 @default.
- W2104411075 hasConcept C124101348 @default.
- W2104411075 hasConcept C127705205 @default.
- W2104411075 hasConcept C153604712 @default.
- W2104411075 hasConcept C154945302 @default.
- W2104411075 hasConcept C173801870 @default.
- W2104411075 hasConcept C195807954 @default.
- W2104411075 hasConcept C23123220 @default.
- W2104411075 hasConcept C2776214188 @default.
- W2104411075 hasConcept C33923547 @default.
- W2104411075 hasConcept C41008148 @default.
- W2104411075 hasConcept C78023250 @default.
- W2104411075 hasConcept C81669768 @default.
- W2104411075 hasConcept C9357733 @default.
- W2104411075 hasConceptScore W2104411075C111919701 @default.
- W2104411075 hasConceptScore W2104411075C114614502 @default.
- W2104411075 hasConceptScore W2104411075C119857082 @default.
- W2104411075 hasConceptScore W2104411075C124101348 @default.
- W2104411075 hasConceptScore W2104411075C127705205 @default.
- W2104411075 hasConceptScore W2104411075C153604712 @default.
- W2104411075 hasConceptScore W2104411075C154945302 @default.
- W2104411075 hasConceptScore W2104411075C173801870 @default.
- W2104411075 hasConceptScore W2104411075C195807954 @default.
- W2104411075 hasConceptScore W2104411075C23123220 @default.
- W2104411075 hasConceptScore W2104411075C2776214188 @default.
- W2104411075 hasConceptScore W2104411075C33923547 @default.
- W2104411075 hasConceptScore W2104411075C41008148 @default.
- W2104411075 hasConceptScore W2104411075C78023250 @default.
- W2104411075 hasConceptScore W2104411075C81669768 @default.
- W2104411075 hasConceptScore W2104411075C9357733 @default.
- W2104411075 hasLocation W21044110751 @default.
- W2104411075 hasOpenAccess W2104411075 @default.
- W2104411075 hasPrimaryLocation W21044110751 @default.
- W2104411075 hasRelatedWork W102721276 @default.
- W2104411075 hasRelatedWork W1570253396 @default.
- W2104411075 hasRelatedWork W1571170912 @default.
- W2104411075 hasRelatedWork W1788528807 @default.
- W2104411075 hasRelatedWork W2104411075 @default.