Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104428070> ?p ?o ?g. }
- W2104428070 abstract "The recent emergence of high-throughput automated image acquisition technologies has forever changed how cell biologists collect and analyze data. Historically, the interpretation of cellular phenotypes in different experimental conditions has been dependent upon the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing development of automated microscope-based technologies now facilitates the acquisition of trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA interference (RNAi) or small-molecule screens, the massive size of these datasets precludes human analysis. Thus, the development of automated methods which aim to identify novel and biological relevant phenotypes online is one of the major challenges in high-throughput image-based screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes from each other. Arbitrarily extracted information causes biased analysis, while combining the complete existing datasets with each new image is intractable in high-throughput screens.Here we present the design and implementation of a novel and robust online phenotype discovery method with broad applicability that can be used in diverse experimental contexts, especially high-throughput RNAi screens. This method features phenotype modelling and iterative cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM) is employed to estimate the distribution of each existing phenotype, and then used as reference distribution in gap statistics. This method is broadly applicable to a number of different types of image-based datasets derived from a wide spectrum of experimental conditions and is suitable to adaptively process new images which are continuously added to existing datasets. Validations were carried out on different dataset, including published RNAi screening using Drosophila embryos [Additional files 1, 2], dataset for cell cycle phase identification using HeLa cells [Additional files 1, 3, 4] and synthetic dataset using polygons, our methods tackled three aforementioned tasks effectively with an accuracy range of 85%-90%. When our method is implemented in the context of a Drosophila genome-scale RNAi image-based screening of cultured cells aimed to identifying the contribution of individual genes towards the regulation of cell-shape, it efficiently discovers meaningful new phenotypes and provides novel biological insight. We also propose a two-step procedure to modify the novelty detection method based on one-class SVM, so that it can be used to online phenotype discovery. In different conditions, we compared the SVM based method with our method using various datasets and our methods consistently outperformed SVM based method in at least two of three tasks by 2% to 5%. These results demonstrate that our methods can be used to better identify novel phenotypes in image-based datasets from a wide range of conditions and organisms.We demonstrate that our method can detect various novel phenotypes effectively in complex datasets. Experiment results also validate that our method performs consistently under different order of image input, variation of starting conditions including the number and composition of existing phenotypes, and dataset from different screens. In our findings, the proposed method is suitable for online phenotype discovery in diverse high-throughput image-based genetic and chemical screens." @default.
- W2104428070 created "2016-06-24" @default.
- W2104428070 creator A5015077092 @default.
- W2104428070 creator A5038259273 @default.
- W2104428070 creator A5040167995 @default.
- W2104428070 creator A5040883232 @default.
- W2104428070 creator A5065291902 @default.
- W2104428070 creator A5071083794 @default.
- W2104428070 creator A5088752032 @default.
- W2104428070 date "2008-06-05" @default.
- W2104428070 modified "2023-10-10" @default.
- W2104428070 title "Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens" @default.
- W2104428070 cites W1493454437 @default.
- W2104428070 cites W1535477549 @default.
- W2104428070 cites W1886306325 @default.
- W2104428070 cites W1966489199 @default.
- W2104428070 cites W1973041621 @default.
- W2104428070 cites W1993669821 @default.
- W2104428070 cites W1998202992 @default.
- W2104428070 cites W2004512017 @default.
- W2104428070 cites W2013225614 @default.
- W2104428070 cites W2018821242 @default.
- W2104428070 cites W2044465660 @default.
- W2104428070 cites W2059930693 @default.
- W2104428070 cites W2060542593 @default.
- W2104428070 cites W2066060839 @default.
- W2104428070 cites W2071949631 @default.
- W2104428070 cites W2073232459 @default.
- W2104428070 cites W2075744820 @default.
- W2104428070 cites W2100383758 @default.
- W2104428070 cites W2108303909 @default.
- W2104428070 cites W2109542479 @default.
- W2104428070 cites W2116633773 @default.
- W2104428070 cites W2125148312 @default.
- W2104428070 cites W2130618490 @default.
- W2104428070 cites W2131983874 @default.
- W2104428070 cites W2132870739 @default.
- W2104428070 cites W2140736261 @default.
- W2104428070 cites W2141955292 @default.
- W2104428070 cites W2143637300 @default.
- W2104428070 cites W2149532872 @default.
- W2104428070 cites W3005363104 @default.
- W2104428070 doi "https://doi.org/10.1186/1471-2105-9-264" @default.
- W2104428070 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2443381" @default.
- W2104428070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18534020" @default.
- W2104428070 hasPublicationYear "2008" @default.
- W2104428070 type Work @default.
- W2104428070 sameAs 2104428070 @default.
- W2104428070 citedByCount "47" @default.
- W2104428070 countsByYear W21044280702012 @default.
- W2104428070 countsByYear W21044280702013 @default.
- W2104428070 countsByYear W21044280702014 @default.
- W2104428070 countsByYear W21044280702015 @default.
- W2104428070 countsByYear W21044280702016 @default.
- W2104428070 countsByYear W21044280702017 @default.
- W2104428070 countsByYear W21044280702018 @default.
- W2104428070 countsByYear W21044280702020 @default.
- W2104428070 countsByYear W21044280702021 @default.
- W2104428070 countsByYear W21044280702022 @default.
- W2104428070 crossrefType "journal-article" @default.
- W2104428070 hasAuthorship W2104428070A5015077092 @default.
- W2104428070 hasAuthorship W2104428070A5038259273 @default.
- W2104428070 hasAuthorship W2104428070A5040167995 @default.
- W2104428070 hasAuthorship W2104428070A5040883232 @default.
- W2104428070 hasAuthorship W2104428070A5065291902 @default.
- W2104428070 hasAuthorship W2104428070A5071083794 @default.
- W2104428070 hasAuthorship W2104428070A5088752032 @default.
- W2104428070 hasBestOaLocation W21044280701 @default.
- W2104428070 hasConcept C104317684 @default.
- W2104428070 hasConcept C124101348 @default.
- W2104428070 hasConcept C127716648 @default.
- W2104428070 hasConcept C1491633281 @default.
- W2104428070 hasConcept C151730666 @default.
- W2104428070 hasConcept C154945302 @default.
- W2104428070 hasConcept C157044486 @default.
- W2104428070 hasConcept C157764524 @default.
- W2104428070 hasConcept C2779343474 @default.
- W2104428070 hasConcept C41008148 @default.
- W2104428070 hasConcept C54355233 @default.
- W2104428070 hasConcept C555944384 @default.
- W2104428070 hasConcept C70721500 @default.
- W2104428070 hasConcept C76155785 @default.
- W2104428070 hasConcept C86803240 @default.
- W2104428070 hasConceptScore W2104428070C104317684 @default.
- W2104428070 hasConceptScore W2104428070C124101348 @default.
- W2104428070 hasConceptScore W2104428070C127716648 @default.
- W2104428070 hasConceptScore W2104428070C1491633281 @default.
- W2104428070 hasConceptScore W2104428070C151730666 @default.
- W2104428070 hasConceptScore W2104428070C154945302 @default.
- W2104428070 hasConceptScore W2104428070C157044486 @default.
- W2104428070 hasConceptScore W2104428070C157764524 @default.
- W2104428070 hasConceptScore W2104428070C2779343474 @default.
- W2104428070 hasConceptScore W2104428070C41008148 @default.
- W2104428070 hasConceptScore W2104428070C54355233 @default.
- W2104428070 hasConceptScore W2104428070C555944384 @default.
- W2104428070 hasConceptScore W2104428070C70721500 @default.
- W2104428070 hasConceptScore W2104428070C76155785 @default.
- W2104428070 hasConceptScore W2104428070C86803240 @default.
- W2104428070 hasIssue "1" @default.
- W2104428070 hasLocation W21044280701 @default.