Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104432172> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2104432172 abstract "Brain tissue Segmentation from the MRI images is having significance in the medical research field. The accurate Segmentation of the normal as well as the abnormal tissues is the complex assignment in this process. In this paper, a technique named Neuro-Fuzzy Based Segmentation (NFBS) is proposed for segmenting the normal features such as White Matter (WM), Gray Matter (GM) and Cerebro-Spinal Fluid (CSF) in the MRI Brain images. (1) Feature extraction (2) Classification (3) Segmentation are the three stages offered in this work. At first, the features such as energy, entropy, homogeneity, contrast and correlation from MRI Brain Images are extracted. Next, by utilizing Neuro-Fuzzy classifier, the Classification process is carried out and for this process, the feature set is specified as the input. From the outcome of Classification, the images are categorized into normal as well as abnormal. The further procedure Segmentation is performed according to this outcome only. The normal MRI images are segmented into normal tissues like White Matter (WM), Gray Matter (GM) and Cerebro-Spinal Fluid (CSF). All the tissues are individually segmented by special methods such as Gradient method, Orthogonal Polynomial Transform method. Utilizing MATLAB platform, the implementation of the proposed technique is made. The experimentation is carried out on the MRI Brain Images by BrainWeb data sets. The performance of the proposed technique is assessed with the help of the metrics namely FPR, FNR, Specificity, Sensitivity and Accuracy. Therefore, using our proposed techniques with enhanced classification, the normal tissues of MRI Brain images are segmented accurately." @default.
- W2104432172 created "2016-06-24" @default.
- W2104432172 creator A5019859797 @default.
- W2104432172 creator A5054450498 @default.
- W2104432172 date "2014-10-30" @default.
- W2104432172 modified "2023-09-27" @default.
- W2104432172 title "An efficient neuro-fuzzy based segmentation of normal tissues in brain MRI (BMRI) using extensive feature set" @default.
- W2104432172 cites W1987217463 @default.
- W2104432172 cites W1989806566 @default.
- W2104432172 cites W2008512338 @default.
- W2104432172 cites W2010115471 @default.
- W2104432172 cites W2012637535 @default.
- W2104432172 cites W2015513598 @default.
- W2104432172 cites W2033358375 @default.
- W2104432172 cites W2054105681 @default.
- W2104432172 cites W2067065405 @default.
- W2104432172 cites W2073087131 @default.
- W2104432172 cites W2102595307 @default.
- W2104432172 cites W2107076419 @default.
- W2104432172 cites W2107258647 @default.
- W2104432172 cites W2108707886 @default.
- W2104432172 cites W2114856503 @default.
- W2104432172 cites W2115210750 @default.
- W2104432172 cites W2119737461 @default.
- W2104432172 cites W2129571271 @default.
- W2104432172 cites W2131006320 @default.
- W2104432172 cites W2131478329 @default.
- W2104432172 cites W2136573752 @default.
- W2104432172 cites W2139326205 @default.
- W2104432172 cites W2160172739 @default.
- W2104432172 cites W2162630772 @default.
- W2104432172 cites W2167378745 @default.
- W2104432172 cites W2187041083 @default.
- W2104432172 doi "https://doi.org/10.14738/jbemi.15.429" @default.
- W2104432172 hasPublicationYear "2014" @default.
- W2104432172 type Work @default.
- W2104432172 sameAs 2104432172 @default.
- W2104432172 citedByCount "1" @default.
- W2104432172 countsByYear W21044321722015 @default.
- W2104432172 crossrefType "journal-article" @default.
- W2104432172 hasAuthorship W2104432172A5019859797 @default.
- W2104432172 hasAuthorship W2104432172A5054450498 @default.
- W2104432172 hasBestOaLocation W21044321721 @default.
- W2104432172 hasConcept C124504099 @default.
- W2104432172 hasConcept C126838900 @default.
- W2104432172 hasConcept C143409427 @default.
- W2104432172 hasConcept C153180895 @default.
- W2104432172 hasConcept C154945302 @default.
- W2104432172 hasConcept C2781192897 @default.
- W2104432172 hasConcept C31972630 @default.
- W2104432172 hasConcept C41008148 @default.
- W2104432172 hasConcept C52622490 @default.
- W2104432172 hasConcept C71924100 @default.
- W2104432172 hasConcept C89600930 @default.
- W2104432172 hasConceptScore W2104432172C124504099 @default.
- W2104432172 hasConceptScore W2104432172C126838900 @default.
- W2104432172 hasConceptScore W2104432172C143409427 @default.
- W2104432172 hasConceptScore W2104432172C153180895 @default.
- W2104432172 hasConceptScore W2104432172C154945302 @default.
- W2104432172 hasConceptScore W2104432172C2781192897 @default.
- W2104432172 hasConceptScore W2104432172C31972630 @default.
- W2104432172 hasConceptScore W2104432172C41008148 @default.
- W2104432172 hasConceptScore W2104432172C52622490 @default.
- W2104432172 hasConceptScore W2104432172C71924100 @default.
- W2104432172 hasConceptScore W2104432172C89600930 @default.
- W2104432172 hasIssue "2" @default.
- W2104432172 hasLocation W21044321721 @default.
- W2104432172 hasOpenAccess W2104432172 @default.
- W2104432172 hasPrimaryLocation W21044321721 @default.
- W2104432172 hasRelatedWork W1507266234 @default.
- W2104432172 hasRelatedWork W1631910785 @default.
- W2104432172 hasRelatedWork W1669643531 @default.
- W2104432172 hasRelatedWork W1721780360 @default.
- W2104432172 hasRelatedWork W2110230079 @default.
- W2104432172 hasRelatedWork W2117664411 @default.
- W2104432172 hasRelatedWork W2117933325 @default.
- W2104432172 hasRelatedWork W2122581818 @default.
- W2104432172 hasRelatedWork W2159066190 @default.
- W2104432172 hasRelatedWork W2739874619 @default.
- W2104432172 hasVolume "1" @default.
- W2104432172 isParatext "false" @default.
- W2104432172 isRetracted "false" @default.
- W2104432172 magId "2104432172" @default.
- W2104432172 workType "article" @default.