Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104449722> ?p ?o ?g. }
- W2104449722 endingPage "10" @default.
- W2104449722 startingPage "1" @default.
- W2104449722 abstract "The aim of this study is to evaluate the filtering techniques which can remove the noise involved in the time series. For this, Logistic series which is chaotic series and radar rainfall series are used for the evaluation of low-pass filter (LF) and Kalman filter (KF). The noise is added to Logistic series by considering noise level and the noise added series is filtered by LF and KF for the noise reduction. The analysis for the evaluation of LF and KF techniques is performed by the correlation coefficient, standard error, the attractor, and the BDS statistic from chaos theory. The analysis result for Logistic series clearly showed that KF is better tool than LF for removing the noise. Also, we used the radar rainfall series for evaluating the noise reduction capabilities of LF and KF. In this case, it was difficult to distinguish which filtering technique is better way for noise reduction when the typical statistics such as correlation coefficient and standard error were used. However, when the attractor and the BDS statistic were used for evaluating LF and KF, we could clearly identify that KF is better than LF." @default.
- W2104449722 created "2016-06-24" @default.
- W2104449722 creator A5000981126 @default.
- W2104449722 creator A5004407362 @default.
- W2104449722 creator A5030633558 @default.
- W2104449722 creator A5031644548 @default.
- W2104449722 creator A5036224047 @default.
- W2104449722 creator A5041515182 @default.
- W2104449722 creator A5047086305 @default.
- W2104449722 creator A5066948062 @default.
- W2104449722 date "2014-01-01" @default.
- W2104449722 modified "2023-09-25" @default.
- W2104449722 title "Noise Reduction Analysis of Radar Rainfall Using Chaotic Dynamics and Filtering Techniques" @default.
- W2104449722 cites W1489682725 @default.
- W2104449722 cites W1507259579 @default.
- W2104449722 cites W1523079709 @default.
- W2104449722 cites W1532223261 @default.
- W2104449722 cites W1973710415 @default.
- W2104449722 cites W1980085084 @default.
- W2104449722 cites W1980145769 @default.
- W2104449722 cites W1984391316 @default.
- W2104449722 cites W1988986813 @default.
- W2104449722 cites W2010438871 @default.
- W2104449722 cites W2013866101 @default.
- W2104449722 cites W2026068316 @default.
- W2104449722 cites W2029401646 @default.
- W2104449722 cites W2031616123 @default.
- W2104449722 cites W2032004097 @default.
- W2104449722 cites W2040704490 @default.
- W2104449722 cites W2042805680 @default.
- W2104449722 cites W2044291317 @default.
- W2104449722 cites W2055730008 @default.
- W2104449722 cites W2060090750 @default.
- W2104449722 cites W2062800628 @default.
- W2104449722 cites W2066366061 @default.
- W2104449722 cites W2068310966 @default.
- W2104449722 cites W2070099820 @default.
- W2104449722 cites W2073817600 @default.
- W2104449722 cites W2074049520 @default.
- W2104449722 cites W2079584450 @default.
- W2104449722 cites W2094834228 @default.
- W2104449722 cites W2096283716 @default.
- W2104449722 cites W2102892532 @default.
- W2104449722 cites W2105934661 @default.
- W2104449722 cites W2134383471 @default.
- W2104449722 cites W2135801689 @default.
- W2104449722 cites W2141394518 @default.
- W2104449722 cites W2154287466 @default.
- W2104449722 cites W2159310053 @default.
- W2104449722 cites W2164267617 @default.
- W2104449722 cites W2174998367 @default.
- W2104449722 cites W3160528504 @default.
- W2104449722 doi "https://doi.org/10.1155/2014/517571" @default.
- W2104449722 hasPublicationYear "2014" @default.
- W2104449722 type Work @default.
- W2104449722 sameAs 2104449722 @default.
- W2104449722 citedByCount "7" @default.
- W2104449722 countsByYear W21044497222015 @default.
- W2104449722 countsByYear W21044497222017 @default.
- W2104449722 countsByYear W21044497222018 @default.
- W2104449722 countsByYear W21044497222019 @default.
- W2104449722 countsByYear W21044497222021 @default.
- W2104449722 countsByYear W21044497222023 @default.
- W2104449722 crossrefType "journal-article" @default.
- W2104449722 hasAuthorship W2104449722A5000981126 @default.
- W2104449722 hasAuthorship W2104449722A5004407362 @default.
- W2104449722 hasAuthorship W2104449722A5030633558 @default.
- W2104449722 hasAuthorship W2104449722A5031644548 @default.
- W2104449722 hasAuthorship W2104449722A5036224047 @default.
- W2104449722 hasAuthorship W2104449722A5041515182 @default.
- W2104449722 hasAuthorship W2104449722A5047086305 @default.
- W2104449722 hasAuthorship W2104449722A5066948062 @default.
- W2104449722 hasBestOaLocation W21044497221 @default.
- W2104449722 hasConcept C105795698 @default.
- W2104449722 hasConcept C106131492 @default.
- W2104449722 hasConcept C11413529 @default.
- W2104449722 hasConcept C115961682 @default.
- W2104449722 hasConcept C127313418 @default.
- W2104449722 hasConcept C134306372 @default.
- W2104449722 hasConcept C143724316 @default.
- W2104449722 hasConcept C151730666 @default.
- W2104449722 hasConcept C154945302 @default.
- W2104449722 hasConcept C157286648 @default.
- W2104449722 hasConcept C163294075 @default.
- W2104449722 hasConcept C164380108 @default.
- W2104449722 hasConcept C205330730 @default.
- W2104449722 hasConcept C2777052490 @default.
- W2104449722 hasConcept C31972630 @default.
- W2104449722 hasConcept C33923547 @default.
- W2104449722 hasConcept C41008148 @default.
- W2104449722 hasConcept C554190296 @default.
- W2104449722 hasConcept C76155785 @default.
- W2104449722 hasConcept C89128539 @default.
- W2104449722 hasConcept C99498987 @default.
- W2104449722 hasConceptScore W2104449722C105795698 @default.
- W2104449722 hasConceptScore W2104449722C106131492 @default.
- W2104449722 hasConceptScore W2104449722C11413529 @default.
- W2104449722 hasConceptScore W2104449722C115961682 @default.