Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104489082> ?p ?o ?g. }
- W2104489082 abstract "We introduce a machine learning model to predict atomization energies of a diverse set of organic molecules, based on nuclear charges and atomic positions only. The problem of solving the molecular Schrodinger equation is mapped onto a non-linear statistical regression problem of reduced complexity. Regression models are trained on and compared to atomization energies computed with hybrid density-functional theory. Cross-validation over more than seven thousand small organic molecules yields a mean absolute error of ~10 kcal/mol. Applicability is demonstrated for the prediction of molecular atomization potential energy curves." @default.
- W2104489082 created "2016-06-24" @default.
- W2104489082 creator A5020780798 @default.
- W2104489082 creator A5026929463 @default.
- W2104489082 creator A5082698816 @default.
- W2104489082 creator A5088793872 @default.
- W2104489082 date "2012-01-31" @default.
- W2104489082 modified "2023-10-15" @default.
- W2104489082 title "Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning" @default.
- W2104489082 cites W1545231783 @default.
- W2104489082 cites W1975997599 @default.
- W2104489082 cites W1978538703 @default.
- W2104489082 cites W1979408061 @default.
- W2104489082 cites W1982598895 @default.
- W2104489082 cites W1987236926 @default.
- W2104489082 cites W1988636074 @default.
- W2104489082 cites W1998317125 @default.
- W2104489082 cites W1998848097 @default.
- W2104489082 cites W2000500972 @default.
- W2104489082 cites W2000957843 @default.
- W2104489082 cites W2016819003 @default.
- W2104489082 cites W2017891892 @default.
- W2104489082 cites W2022080248 @default.
- W2104489082 cites W2023390323 @default.
- W2104489082 cites W2023466796 @default.
- W2104489082 cites W2025444507 @default.
- W2104489082 cites W2030976617 @default.
- W2104489082 cites W2037761619 @default.
- W2104489082 cites W2038617772 @default.
- W2104489082 cites W2049961577 @default.
- W2104489082 cites W2059401145 @default.
- W2104489082 cites W2075930604 @default.
- W2104489082 cites W2083415705 @default.
- W2104489082 cites W2108995755 @default.
- W2104489082 cites W2130437470 @default.
- W2104489082 cites W2143981217 @default.
- W2104489082 cites W2148424525 @default.
- W2104489082 cites W2151571625 @default.
- W2104489082 cites W2153693853 @default.
- W2104489082 cites W2206840988 @default.
- W2104489082 cites W2230728100 @default.
- W2104489082 cites W2787894218 @default.
- W2104489082 cites W4242320552 @default.
- W2104489082 doi "https://doi.org/10.1103/physrevlett.108.058301" @default.
- W2104489082 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22400967" @default.
- W2104489082 hasPublicationYear "2012" @default.
- W2104489082 type Work @default.
- W2104489082 sameAs 2104489082 @default.
- W2104489082 citedByCount "1550" @default.
- W2104489082 countsByYear W21044890822012 @default.
- W2104489082 countsByYear W21044890822013 @default.
- W2104489082 countsByYear W21044890822014 @default.
- W2104489082 countsByYear W21044890822015 @default.
- W2104489082 countsByYear W21044890822016 @default.
- W2104489082 countsByYear W21044890822017 @default.
- W2104489082 countsByYear W21044890822018 @default.
- W2104489082 countsByYear W21044890822019 @default.
- W2104489082 countsByYear W21044890822020 @default.
- W2104489082 countsByYear W21044890822021 @default.
- W2104489082 countsByYear W21044890822022 @default.
- W2104489082 countsByYear W21044890822023 @default.
- W2104489082 crossrefType "journal-article" @default.
- W2104489082 hasAuthorship W2104489082A5020780798 @default.
- W2104489082 hasAuthorship W2104489082A5026929463 @default.
- W2104489082 hasAuthorship W2104489082A5082698816 @default.
- W2104489082 hasAuthorship W2104489082A5088793872 @default.
- W2104489082 hasBestOaLocation W21044890821 @default.
- W2104489082 hasConcept C105795698 @default.
- W2104489082 hasConcept C119857082 @default.
- W2104489082 hasConcept C121332964 @default.
- W2104489082 hasConcept C121864883 @default.
- W2104489082 hasConcept C139945424 @default.
- W2104489082 hasConcept C152365726 @default.
- W2104489082 hasConcept C170797541 @default.
- W2104489082 hasConcept C177264268 @default.
- W2104489082 hasConcept C186370098 @default.
- W2104489082 hasConcept C188154048 @default.
- W2104489082 hasConcept C199360897 @default.
- W2104489082 hasConcept C32909587 @default.
- W2104489082 hasConcept C33923547 @default.
- W2104489082 hasConcept C41008148 @default.
- W2104489082 hasConcept C44870925 @default.
- W2104489082 hasConcept C48921125 @default.
- W2104489082 hasConcept C62520636 @default.
- W2104489082 hasConcept C83546350 @default.
- W2104489082 hasConceptScore W2104489082C105795698 @default.
- W2104489082 hasConceptScore W2104489082C119857082 @default.
- W2104489082 hasConceptScore W2104489082C121332964 @default.
- W2104489082 hasConceptScore W2104489082C121864883 @default.
- W2104489082 hasConceptScore W2104489082C139945424 @default.
- W2104489082 hasConceptScore W2104489082C152365726 @default.
- W2104489082 hasConceptScore W2104489082C170797541 @default.
- W2104489082 hasConceptScore W2104489082C177264268 @default.
- W2104489082 hasConceptScore W2104489082C186370098 @default.
- W2104489082 hasConceptScore W2104489082C188154048 @default.
- W2104489082 hasConceptScore W2104489082C199360897 @default.
- W2104489082 hasConceptScore W2104489082C32909587 @default.
- W2104489082 hasConceptScore W2104489082C33923547 @default.
- W2104489082 hasConceptScore W2104489082C41008148 @default.
- W2104489082 hasConceptScore W2104489082C44870925 @default.