Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104613975> ?p ?o ?g. }
- W2104613975 endingPage "77" @default.
- W2104613975 startingPage "71" @default.
- W2104613975 abstract "Periodontology 2000Volume 54, Issue 1 p. 71-77 Bioactive mechanism of Porphyromonas gingivalis lipid A Tomohiko Ogawa, Tomohiko OgawaSearch for more papers by this authorTakakazu Yagi, Takakazu YagiSearch for more papers by this author Tomohiko Ogawa, Tomohiko OgawaSearch for more papers by this authorTakakazu Yagi, Takakazu YagiSearch for more papers by this author First published: 16 August 2010 https://doi.org/10.1111/j.1600-0757.2009.00343.xCitations: 15Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References 1 Akira A, Takeda K. Toll-like receptor signaling. Nat Rev Immunol 2004: 4: 499– 511. 2 Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001: 2: 675– 680. 3 Asai Y, Hashimoto M, Fletcher HM, Miyake K, Akira S, Ogawa T. Lipopolysaccharide preparation extracted from Porphyromonas gingivalis lipoprotein-deficient mutant shows a marked decrease in toll-like receptor 2-mediated signaling. Infect Immun 2005: 73: 2157– 2163. 4 Bainbridge BW, Coats SR, Darveau RP. Porphyromonas gingivalis lipopolysaccharide displays functionally diverse interactions with the innate host defense system. Ann Periodontol 2002: 7: 29– 37. 5 Bainbridge BW, Darveau RP. Porphyromonas gingivalis lipopolysaccharide: an unusual pattern recognition receptor ligand for the innate host defense system. Acta Odontol Scand 2001: 59: 131– 138. 6 Bramanti TE, Wong GG, Weintraub ST, Holt SC. Chemical characterization and biologic properties of lipopolysaccharide from Bacteroides gingivalis strains W50, W83, and ATCC 33277. Oral Microbiol Immunol 1989: 4: 183– 192. 7 Coats SR, Reife RA, Bainbridge BW, Pham TT, Darveau RP. Porphyromonas gingivalis lipopolysaccharide antagonizes Escherichia coli lipopolysaccharide at Toll-like receptor 4 in human endothelial cells. Infect Immun 2003: 71: 6799– 6807. 8 Darveau RP, Arbabi S, Garcia I, Bainbridge B, Maier RV. Porphyromonas gingivalis lipopolysaccharide is both agonist and antagonist for p38 mitogen-activated protein kinase activation. Infect Immun 2002: 70: 1867– 1873. 9 Darveau RP, Pham TT, Lemley K, Reife RA, Bainbridge BW, Coats SR, Howald WN, Way SS, Hajjar AM. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both Toll-like receptors 2 and 4. Infect Immun 2004: 72: 5041– 5051. 10 Dobrovolskaia MA, Medvedev AE, Thomas KE, Cuesta N, Toshchakov V, Ren T, Cody MJ, Michalek SM, Rice NR, Vogel SN. Induction of in vitro reprogramming by Toll-like receptor (TLR)2 and TLR4 agonists in murine macrophages: effects of TLR “homotolerance” versus “heterotolerance” on NF-κB signaling pathway components. J Immunol 2003: 170: 508– 519. 11 Fujiwara T, Nishihara T, Koga T, Hamada S. Serological properties and immunobiological activities of lipopolysaccharides from black-pigmented and related oral Bacteroides species. J Gen Microbiol 1988: 134: 2867– 2876. 12 Fujiwara T, Ogawa T, Sobue S, Hamada S. Chemical, immunobiological and antigenic characterizations of lipopolysaccharides from Bacteroides gingivalis strains. J Gen Microbiol 1990: 36: 319– 326. 13 Hamada S, Koga T, Nishihara T, Fujiwara T, Okahashi N. Chracterization and immunobiologic activities of lipopoly-saccharides from periodontal bacteria. Adv Dent Res 1988: 2: 284– 291. 14 Hamada S, Okahashi N, Fujiwara T, Nishihara T, Koga T. Selection induction of prostaglandin E production in C3H/HeJ mouse macrophages by lipopolysaccharides from Bacteroides gingivalis. Oral Microbiol Immunol 1988: 3: 196– 198. 15 Hanazawa S, Nakada K, Ohmori Y, Miyoshi T, Amano S, Kitano S. Functional role of interleukin 1 in periodontal disease: induction of interleukin 1 production by Bacteroides gingivalis lipopolysaccharide in peritoneal macrophages from C3H/HeN and C3H/HeJ mice. Infect Immun 1985: 50: 262– 270. 16 Hashimoto M, Asai Y, Ogawa T. Separation and structural analysis of lipoprotein in a lipopolysaccharide preparation from Porphyromonas gingivalis. Int Immunol 2004: 16: 1431– 1437. 17 Hirai K, Fujimura S, Shibata Y, Ishihara K, Kato T, Okuda K, Nakamura T. Differences in TNF-alpha producing activity from murine peritoneal macrophages induced by lipopolysaccharides of Prevotella heparinolytica and Porphyromonas gingivalis. Bull Tokyo Dent Coll 2000: 41: 135– 140. 18 Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, Ward DC, Qureshi N, Michalek SM, Vogel SN. Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001: 69: 1477– 1482. 19 Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999: 162: 3749– 3752. 20 Inada K, Yoshida M, Sasaki O, Suzuki M, Yoshida H, Okuda K, Takazoe I. Polyclonal B cell activation, endotoxin tolerance, and limulus tests of endotoxin preparations of some periodontopathogens. Bull Tokyo Dent Coll 1984: 35: 67– 78. 21 Isogai H, Isogai E, Fujii N, Oguma K, Kagota W, Takano K. Histological changes and some in vitro biological activities induced by lipopolysaccharide from Bacteroides gingivalis. Zentralbl Bakteriol Mikrobiol Hyg [A] 1988: 269: 64– 77. 22 Ito HO, Shuto T, Takada H, Koga T, Aida Y, Hirata M, Koga T. Lipopolysaccharides from Porphyromonas gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans promote osteoclastic differentiation in vitro. Arch Oral Biol 1996: 41: 439– 444. 23 Johne B, Myhrvold V, Morland B. Effects of endotoxins from Bacteroides intermedius and Escherichia coli on cytotoxic and lysosomal activity in peritoneal macrophages from endotoxin responder and low responder mouse strains. Acta Pathol Microbiol Immunol Scand [C] 1987: 95: 85– 95. 24 Kido J, Kido R, Suryono , Kataoka M, Fagerhol MK, Nagata T. Calprotectin release from human neutrophils is induced by Porphyromonas gingivalis lipopolysaccharide via the CD14-Toll-like receptor-nuclear factor kappaB pathway. J Periodont Res 2003: 38: 557– 563. 25 Kimura S, Koga T, Fujiwara T, Kontani M, Shintoku K, Kaya H, Hamada S. Tyrosine protein phosphorylation in murine B lymphocytes by stimulation with lipopolysaccharide from Porphyromonas gingivalis. FEMS Microbiol Lett 1995: 130: 1– 6. 26 Kirikae T, Nitta T, Kirikae F, Suda Y, Kusumoto S, Qureshi N, Nakano M. Lipopolysaccharides (LPS) of oral black-pigmented bacteria induce tumor necrosis factor production by LPS-refractory C3H/HeJ macrophages in a way different from that of Salmonella LPS. Infect Immun 1999: 67: 1736– 1742. 27 Koga T, Nishihara T, Fujiwara T, Nisizawa T, Okahashi N, Noguchi T, Hamada S. Biochemical and immunobiological properties of lipopolysaccharide (LPS) from Bacteroides gingivalis and comparison with LPS from Escherichia coli. Infect Immun 1985: 47: 638– 647. 28 Koga T, Odaka C, Moro I, Fujiwara T, Nishihara T, Okahashi N, Hamada S. Local Shwartzman activity of lipopolysaccharides from several selected strains of suspected periodontopathic bacteria. J Periodont Res 1987: 22: 103– 107. 29 Kotani S, Takada H, Takahashi I, Tsujimoto M, Ogawa T, Ikeda T, Harada K, Okamura H, Tamura T, Tanaka S, Shiba T, Kusumoto S, Imoto M, Yoshimura H, Kasai N. Low endotoxic activities of synthetic Salmonella-type lipid A with an addtional acyloxyacyl group on the 2-amino group of ß(1-6) glucosamine disaccharide 1,4′-bisphosphate. Infect Immun 1986: 52: 872– 884. 30 Kotani S, Takada H, Tsujimoto M, Ogawa T, Takahashi I, Ikeda T, Otsuka K, Shimauchi H, Kasai N, Mashimo J, Nagao S, Tanaka A, Tanaka S, Harada K, Nagak K, Kitamura H, Shiba T, Kusumoto S, Imoto M, Yoshimura H. Synthetic lipid A with endotoxic and related biological activities comparable to those of a natural lipid A from an Escherichia coli Re-mutant. Infect Immun 1985: 49: 225– 237. 31 Kumada H, Haishima Y, Umemoto T, Tanamoto K. Structural study on the free lipid A isolated from lipopolysaccharide of Porphyromonas gingivalis. J Bacteriol 1995: 177: 2098– 2106. 32 Makimura Y, Asai Y, Taiji Y, Sugiyama A, Tamai R, Ogawa T. Correlation between chemical structure and biological activities of Porphyromonas gingvalis synthetic lipopeptide derivatives. Clin Exp Immunol 2006: 146: 159– 168. 33 Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997: 388: 394– 397. 34 Miyake K. Roles for accessory molecules in microbial recognition by Toll-like receptors. J Endotoxin Res 2006: 12: 195– 204. 35 Netea MG, Van Deuren M, Kullberg BJ, Cavaillon JM, Van Der Meer JW. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? Trends Immunol 2002: 23: 135– 139. 36 Nociti FH Jr, Foster BL, Barros SP, Darveau RP, Somerman MJ. Cementoblast gene expression is regulated by Porphyromonas gingivalis lipopolysaccharide partially via Toll-like receptor-4/MD-2. J Dent Res 2004: 83: 602– 607. 37 Ogawa T, Asai Y, Hashimoto M, Takeuchi O, Kurita T, Yoshikai Y, Miyake K, Akira S. Cell activation by Porphyromonas gingivalis lipid A molecule through Toll-like receptor 4- and myeloid differentiation factor 88-dependent signaling pathway. Int Immunol 2002: 14: 1325– 1332. 38 Ogawa T, Asai Y, Sakai Y, Oikawa M, Fukase K, Suda Y, Kusumoto S, Tamura T. Endotoxic and immunobiological activities of a chemically synthesized lipid A of Helicobacter pylori strain 206-1. FEMS Immunol Med Microbiol 2003: 36: 1– 7. 39 Ogawa T, Asai Y, Yamamoto H, Taiji Y, Jinno T, Kodama T, Niwata S, Shimauchi H, Ochiai K. Immunobiological activities of a chemically synthesized lipid A of Porphyromonas gingivalis. FEMS Immunol Med Microbiol 2000: 28: 273– 281. 40 Ogawa T, Nakazawa M, Masui K. Immunopharmacological activities of the nontoxic monophosphoryl lipid A of Porphyromonas gingivalis. Vaccine 1996: 14: 70– 76. 41 Ogawa T, Shimauchi H, Uchida H, Mori Y. Stimulation of splenocytes in C3H/HeJ mice with Porphyromonas gingivalis lipid A in comparison with enterobacterial lipid A. Immunobiology 1996: 196: 399– 414. 42 Ogawa T, Uchida H, Amino K. Immunobiological activities of chemically defined lipid A from lipopolysaccharides of Porphyromonas gingivalis. Microbiology 1994: 140: 1209– 1216. 43 Ogawa T. Chemical structure of lipid A from Porphyromonas (Bacteroides) gingivalis lipopolysaccharide. FEBS Lett 1993: 332: 197– 201. 44 Rietschel ET, Brade H, Holst O, Brade L, Müller-Loennies S, Mamat U, Zähringer U, Beckmann F, Seydel U, Brandenburg K, Ulmer AJ, Mattern T, Heine H, Schletter J, Hauschildt S, Loppnow H, Schönbeck U, Flad H-D, Schade UF, Padova FD, Kusumoto S, Schumann BR. Bacterial endotoxin: chemical constitution, biological recognition, host response and immunological detoxification. Curr Top Microbiol Immunol 1996: 216: 39– 81. 45 Shimauchi H, Ogawa T, Uchida H, Yoshida J, Ogoh H, Nozaki T, Okada H. Splenic B-cell activation in lipopolysaccharide-non-responsive C3H/HeJ mice by lipopolysaccharide of Porphyromonas gingivalis. Experientia 1996: 52: 909– 917. 46 Sveen K, Hofstad T, Milner KC. Lethality for mice and chick embryo, pyrogenicity in rabbits and ability to gelate lysate from amoebocytes of Limulus polyphemus by lipopolysaccharides from Bacteroides, Fusobacterium and Veillonella. APMIS [B] 1977: 85: 388– 396. 47 Sveen K. The capacity of lipopolysaccharides from Bacteroides, Fusobacterium and Veillonella to produce skin inflammation and the local and generalized Shwartzman reaction in rabbits. J Periodontal Res 1977: 12: 340– 350. 48 Tabeta K, Yamazaki K, Akashi S, Miyake K, Kumada H, Umemoto T, Yoshie H. Toll-like receptors confer responsiveness to lipopolysaccharide from Porphyromonas gingivalis in human gingival fibroblasts. Infect Immun 2000: 68: 3731– 3735. 49 Takada H, Hirai H, Fujiwara T, Koga T, Ogawa T, Hamada S. Bacteroides lipopolysaccharides (LPS) induce anaphylactoid and lethal reactions in LPS-responsive and -nonresponsive mice primed with muramyl dipeptide. J Infect Dis 1990: 162: 428– 434. 50 Takada H, Kotani S. Structural requirements of lipid A for endotoxicity and other biological activities. CRC Crit Rev Microbiol 1989: 16: 477– 523. 51 Tamai R, Asai Y, Hashimoto M, Fukase K, Kusumoto S, Ishida I, Kiso M, Ogawa T. Cell activation by monosaccharide lipid A analogues utilizing Toll-like receptor 4. Immunology 2003: 110: 66– 72. 52 Tanamoto K, Azumi S, Haishima Y, Kumada H, Umemoto T. The lipid A moiety of Porphyromonas gingivalis lipopolysaccharide specifically mediates the activation of C3H/HeJ mice. J Immunol 1997: 158: 4430– 4436. 53 Tanamoto K. Induction of lethal shock and tolerance by Porphyromonas gingivalis lipopolysaccharide in D-galactosamine-sensitized C3H/HeJ mice. Infect Immun 1999: 67: 3399– 3402. 54 Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 2001: 14: 103– 110. 55 Wang PL, Ohura K. Porphyromonas gingivalis lipopolysaccharide signaling in gingival fibroblasts-CD14 and Toll-like receptors. Crit Rev Oral Biol Med 2002: 13: 132– 142. 56 Wannemuehler MJ, Michalek SM, Jirillo E, Williamson SI, Hirasawa M, McGhee JR. LPS regulation of the immune response: Bacteroides endotoxin induces mitogenic, polyclonal, and antibody responses in classical LPS responsive but not C3H/HeJ mice. J Immunol 1984: 133: 299– 305. 57 Yoshimura A, Kaneko T, Kato Y, Golenbock DT, Hara Y. Lipopolysaccharides from periodontopathic bacteria Porphyromonas gingivalis and Capnocytophaga ochracea are antagonists for human Toll-like receptor 4. Infect Immun 2002: 70: 218– 225. 58 Zhang Y, Gaekwad J, Wolfert MA, Boons G-J. Synthetic tetra-acylated derivatives of lipid A from Porphyromonas gingivalis are antagonists of human TLR4. Org Biomol Chem 2008: 6: 3371– 3381. Citing Literature Volume54, Issue1October 2010Pages 71-77 ReferencesRelatedInformation" @default.
- W2104613975 created "2016-06-24" @default.
- W2104613975 creator A5011498114 @default.
- W2104613975 creator A5086529614 @default.
- W2104613975 date "2010-08-16" @default.
- W2104613975 modified "2023-09-27" @default.
- W2104613975 title "Bioactive mechanism of Porphyromonas gingivalis lipid A" @default.
- W2104613975 cites W1483162601 @default.
- W2104613975 cites W1549397047 @default.
- W2104613975 cites W1655860314 @default.
- W2104613975 cites W1875186011 @default.
- W2104613975 cites W1903133585 @default.
- W2104613975 cites W1916851262 @default.
- W2104613975 cites W1917716984 @default.
- W2104613975 cites W1936399524 @default.
- W2104613975 cites W1949584283 @default.
- W2104613975 cites W1953329867 @default.
- W2104613975 cites W1968821484 @default.
- W2104613975 cites W1972261522 @default.
- W2104613975 cites W1978926805 @default.
- W2104613975 cites W1982772429 @default.
- W2104613975 cites W1993625612 @default.
- W2104613975 cites W2004465286 @default.
- W2104613975 cites W2005659884 @default.
- W2104613975 cites W2015040054 @default.
- W2104613975 cites W2018963640 @default.
- W2104613975 cites W2023606832 @default.
- W2104613975 cites W2029528736 @default.
- W2104613975 cites W2034109840 @default.
- W2104613975 cites W2036721067 @default.
- W2104613975 cites W2039807710 @default.
- W2104613975 cites W2044562009 @default.
- W2104613975 cites W2053344942 @default.
- W2104613975 cites W2054409319 @default.
- W2104613975 cites W2076145955 @default.
- W2104613975 cites W2076900907 @default.
- W2104613975 cites W2096002104 @default.
- W2104613975 cites W2098924752 @default.
- W2104613975 cites W2103575876 @default.
- W2104613975 cites W2105785789 @default.
- W2104613975 cites W2107715779 @default.
- W2104613975 cites W2114143997 @default.
- W2104613975 cites W2116956359 @default.
- W2104613975 cites W2117496725 @default.
- W2104613975 cites W2119540990 @default.
- W2104613975 cites W2121797213 @default.
- W2104613975 cites W2128596600 @default.
- W2104613975 cites W2136998027 @default.
- W2104613975 cites W2138791188 @default.
- W2104613975 cites W2140796028 @default.
- W2104613975 cites W2144345929 @default.
- W2104613975 cites W2144868385 @default.
- W2104613975 cites W2146749940 @default.
- W2104613975 cites W2151120686 @default.
- W2104613975 cites W2152096613 @default.
- W2104613975 cites W2156445477 @default.
- W2104613975 cites W2158572687 @default.
- W2104613975 doi "https://doi.org/10.1111/j.1600-0757.2009.00343.x" @default.
- W2104613975 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20712634" @default.
- W2104613975 hasPublicationYear "2010" @default.
- W2104613975 type Work @default.
- W2104613975 sameAs 2104613975 @default.
- W2104613975 citedByCount "18" @default.
- W2104613975 countsByYear W21046139752013 @default.
- W2104613975 countsByYear W21046139752014 @default.
- W2104613975 countsByYear W21046139752016 @default.
- W2104613975 countsByYear W21046139752018 @default.
- W2104613975 countsByYear W21046139752019 @default.
- W2104613975 countsByYear W21046139752020 @default.
- W2104613975 countsByYear W21046139752021 @default.
- W2104613975 countsByYear W21046139752022 @default.
- W2104613975 countsByYear W21046139752023 @default.
- W2104613975 crossrefType "journal-article" @default.
- W2104613975 hasAuthorship W2104613975A5011498114 @default.
- W2104613975 hasAuthorship W2104613975A5086529614 @default.
- W2104613975 hasConcept C111472728 @default.
- W2104613975 hasConcept C138885662 @default.
- W2104613975 hasConcept C199343813 @default.
- W2104613975 hasConcept C2776357993 @default.
- W2104613975 hasConcept C2780183776 @default.
- W2104613975 hasConcept C2780385504 @default.
- W2104613975 hasConcept C523546767 @default.
- W2104613975 hasConcept C54355233 @default.
- W2104613975 hasConcept C71924100 @default.
- W2104613975 hasConcept C86803240 @default.
- W2104613975 hasConcept C89423630 @default.
- W2104613975 hasConcept C89611455 @default.
- W2104613975 hasConceptScore W2104613975C111472728 @default.
- W2104613975 hasConceptScore W2104613975C138885662 @default.
- W2104613975 hasConceptScore W2104613975C199343813 @default.
- W2104613975 hasConceptScore W2104613975C2776357993 @default.
- W2104613975 hasConceptScore W2104613975C2780183776 @default.
- W2104613975 hasConceptScore W2104613975C2780385504 @default.
- W2104613975 hasConceptScore W2104613975C523546767 @default.
- W2104613975 hasConceptScore W2104613975C54355233 @default.
- W2104613975 hasConceptScore W2104613975C71924100 @default.
- W2104613975 hasConceptScore W2104613975C86803240 @default.
- W2104613975 hasConceptScore W2104613975C89423630 @default.