Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104616090> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2104616090 abstract "Segmentation of MRI brain images plays a critical role in medical image processing and analysis. In this paper, a new method based on Markov Random Field (MRF) is proposed for segmentation of MR brain images. We consider the low-level MRF as a linear combination of Gaussians (LCG) with positive and negative component, and we use the modified Expectation-maximization (MEM) algorithm to estimate the mean, variance and proportion for each distribution.The MEM algorithm is sensitive to initial parameters, so we improve the method of initialization. In high-level MRF, we use Potts model to describe the label image. By using the Bayesian maximum a posterior (MAP) rule, the segmentation problem is converted to precisely identify the models parameters. The MAP estimation is obtained using the Metroplis algorithm to search the optimization. The experimental results show that the proposed method is effective for segmentation of MR brain images." @default.
- W2104616090 created "2016-06-24" @default.
- W2104616090 creator A5029076691 @default.
- W2104616090 creator A5046543349 @default.
- W2104616090 date "2008-08-01" @default.
- W2104616090 modified "2023-10-13" @default.
- W2104616090 title "LCG-MRF-Based Segmentation of MRI Brain Images" @default.
- W2104616090 cites W1531711649 @default.
- W2104616090 cites W1970800786 @default.
- W2104616090 cites W1972544340 @default.
- W2104616090 cites W1993472818 @default.
- W2104616090 cites W2085693883 @default.
- W2104616090 cites W2103148294 @default.
- W2104616090 cites W2115384210 @default.
- W2104616090 cites W2136573752 @default.
- W2104616090 cites W2494521929 @default.
- W2104616090 cites W3159512266 @default.
- W2104616090 doi "https://doi.org/10.1109/iccsit.2008.102" @default.
- W2104616090 hasPublicationYear "2008" @default.
- W2104616090 type Work @default.
- W2104616090 sameAs 2104616090 @default.
- W2104616090 citedByCount "3" @default.
- W2104616090 countsByYear W21046160902012 @default.
- W2104616090 crossrefType "proceedings-article" @default.
- W2104616090 hasAuthorship W2104616090A5029076691 @default.
- W2104616090 hasAuthorship W2104616090A5046543349 @default.
- W2104616090 hasConcept C105795698 @default.
- W2104616090 hasConcept C114466953 @default.
- W2104616090 hasConcept C124504099 @default.
- W2104616090 hasConcept C153180895 @default.
- W2104616090 hasConcept C154945302 @default.
- W2104616090 hasConcept C182081679 @default.
- W2104616090 hasConcept C199360897 @default.
- W2104616090 hasConcept C2778045648 @default.
- W2104616090 hasConcept C31972630 @default.
- W2104616090 hasConcept C33923547 @default.
- W2104616090 hasConcept C41008148 @default.
- W2104616090 hasConcept C49781872 @default.
- W2104616090 hasConcept C65885262 @default.
- W2104616090 hasConcept C89600930 @default.
- W2104616090 hasConceptScore W2104616090C105795698 @default.
- W2104616090 hasConceptScore W2104616090C114466953 @default.
- W2104616090 hasConceptScore W2104616090C124504099 @default.
- W2104616090 hasConceptScore W2104616090C153180895 @default.
- W2104616090 hasConceptScore W2104616090C154945302 @default.
- W2104616090 hasConceptScore W2104616090C182081679 @default.
- W2104616090 hasConceptScore W2104616090C199360897 @default.
- W2104616090 hasConceptScore W2104616090C2778045648 @default.
- W2104616090 hasConceptScore W2104616090C31972630 @default.
- W2104616090 hasConceptScore W2104616090C33923547 @default.
- W2104616090 hasConceptScore W2104616090C41008148 @default.
- W2104616090 hasConceptScore W2104616090C49781872 @default.
- W2104616090 hasConceptScore W2104616090C65885262 @default.
- W2104616090 hasConceptScore W2104616090C89600930 @default.
- W2104616090 hasLocation W21046160901 @default.
- W2104616090 hasOpenAccess W2104616090 @default.
- W2104616090 hasPrimaryLocation W21046160901 @default.
- W2104616090 hasRelatedWork W1980728516 @default.
- W2104616090 hasRelatedWork W1987408329 @default.
- W2104616090 hasRelatedWork W2027804380 @default.
- W2104616090 hasRelatedWork W2047634927 @default.
- W2104616090 hasRelatedWork W2065023930 @default.
- W2104616090 hasRelatedWork W2068098889 @default.
- W2104616090 hasRelatedWork W2098610542 @default.
- W2104616090 hasRelatedWork W2102542391 @default.
- W2104616090 hasRelatedWork W2135879388 @default.
- W2104616090 hasRelatedWork W2142709933 @default.
- W2104616090 hasRelatedWork W2145355000 @default.
- W2104616090 hasRelatedWork W2169367417 @default.
- W2104616090 hasRelatedWork W2170118822 @default.
- W2104616090 hasRelatedWork W2355160055 @default.
- W2104616090 hasRelatedWork W2363685244 @default.
- W2104616090 hasRelatedWork W2367680522 @default.
- W2104616090 hasRelatedWork W2400694582 @default.
- W2104616090 hasRelatedWork W2566588664 @default.
- W2104616090 hasRelatedWork W2613515377 @default.
- W2104616090 hasRelatedWork W283603323 @default.
- W2104616090 isParatext "false" @default.
- W2104616090 isRetracted "false" @default.
- W2104616090 magId "2104616090" @default.
- W2104616090 workType "article" @default.