Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104692761> ?p ?o ?g. }
- W2104692761 endingPage "19516" @default.
- W2104692761 startingPage "19495" @default.
- W2104692761 abstract "Heat flow data for the state of Washington are presented and discussed. The heat flow in the Okanogan Highland averages 75 mW m −2 , and the gradient averages 25°C km −1 . The heat flow in the Columbia Basin averages 62 mW m −2 , and the mean gradient is 41°C km −1 . Both of these provinces are interpreted to have a mantle heat flow of about 55–60 mW m −2 , the same value as in the Basin and Range province to the south and the intermountain region of Canada to the north. These areas comprise the high heat flow, back arc region of the Cordillera. In the coastal provinces and the western part of the southern Washington Cascade Range the heat flow is below normal and averages 40 mW m −2 with an average gradient of 26°C km −1 . This low heat flow is related to the absorption of heat by the subducting slab, part of the Juan de Fuca plate, that is beneath the Pacific Northwest. Thus the low heat flow area represents the outer arc part of the subduction zone. Within the volcanic arc, the Cascade Range, the heat flow pattern is complicated. The heat flow is best characterized in the southern Washington Cascade Range. The heat flow there averages 75 mW m −2 and the gradient averages 45°C km −1 . The heat flow peaks at over 80 mW m −2 along the axial region that coincides with the Indian Heaven, Mount Adams, and Goat Rocks centers of Quaternary volcanism. As is the case in northern Oregon and southern British Columbia, the western edge of the region of high heat flow has a half width of 10 km, implying a heat source no deeper than about 10 km. In the northern Washington Cascade Range the data are too sparse to determine the average heat flow. There are two saddles in the heat flow pattern in Washington, along the Columbia River and in central Washington. The origin for the contrasting heat flow may be segmentation of the heat source or some more local effect. The heat flow of the Cascade Range is well characterized in several locations, and the pattern is similar at all localities. The most striking feature is the 10 km half width of the western side of the high heat flow region where it abuts the low heat flow outer arc region. The axial heat flow ranges from about 80 to greater than 100 mW m −2 . The midcrustal temperatures are interpreted to range from about 400°C to 800°C. The source of these high temperatures is interpreted to be a long‐lived midcrustal zone of magma residence that is characteristic of the Cascade Range regardless of erustal type, rate of volcanism, or composition of volcanism. For example, in southern Washington the region of high heat flow spans the width of the Quaternary zone of volcanism with Mount St. Helens and Mount Adams at the west and east edges, respectively. On the other hand, most of the Oregon stratovolcanoes are near the center of anomalous region." @default.
- W2104692761 created "2016-06-24" @default.
- W2104692761 creator A5031716911 @default.
- W2104692761 creator A5043215434 @default.
- W2104692761 creator A5076407233 @default.
- W2104692761 creator A5081270006 @default.
- W2104692761 date "1990-11-10" @default.
- W2104692761 modified "2023-10-08" @default.
- W2104692761 title "Heat flow in the state of washington and thermal conditions in the Cascade Range" @default.
- W2104692761 cites W133695908 @default.
- W2104692761 cites W1507762024 @default.
- W2104692761 cites W1575732114 @default.
- W2104692761 cites W1597131080 @default.
- W2104692761 cites W1601701122 @default.
- W2104692761 cites W1607494164 @default.
- W2104692761 cites W1637202913 @default.
- W2104692761 cites W1838525910 @default.
- W2104692761 cites W1860864598 @default.
- W2104692761 cites W18936962 @default.
- W2104692761 cites W1964249265 @default.
- W2104692761 cites W1967573078 @default.
- W2104692761 cites W1969225785 @default.
- W2104692761 cites W1969577604 @default.
- W2104692761 cites W1978985684 @default.
- W2104692761 cites W1983753408 @default.
- W2104692761 cites W1995012951 @default.
- W2104692761 cites W2011746009 @default.
- W2104692761 cites W2014346120 @default.
- W2104692761 cites W2023320566 @default.
- W2104692761 cites W2028313287 @default.
- W2104692761 cites W2031081492 @default.
- W2104692761 cites W2031313070 @default.
- W2104692761 cites W2034030933 @default.
- W2104692761 cites W2035087231 @default.
- W2104692761 cites W2035993081 @default.
- W2104692761 cites W2039913103 @default.
- W2104692761 cites W2042847111 @default.
- W2104692761 cites W2042928018 @default.
- W2104692761 cites W2049753821 @default.
- W2104692761 cites W2050469717 @default.
- W2104692761 cites W2050474528 @default.
- W2104692761 cites W2053329850 @default.
- W2104692761 cites W2065698507 @default.
- W2104692761 cites W2084840999 @default.
- W2104692761 cites W2089580673 @default.
- W2104692761 cites W2095602163 @default.
- W2104692761 cites W2099315431 @default.
- W2104692761 cites W2100170079 @default.
- W2104692761 cites W2105898844 @default.
- W2104692761 cites W2109586667 @default.
- W2104692761 cites W2138324674 @default.
- W2104692761 cites W2143651700 @default.
- W2104692761 cites W2144093356 @default.
- W2104692761 cites W2145559224 @default.
- W2104692761 cites W2146663523 @default.
- W2104692761 cites W2269470391 @default.
- W2104692761 cites W2311199187 @default.
- W2104692761 cites W2482716315 @default.
- W2104692761 cites W2497702463 @default.
- W2104692761 cites W4229970159 @default.
- W2104692761 cites W4234712688 @default.
- W2104692761 cites W4243792489 @default.
- W2104692761 cites W4249482424 @default.
- W2104692761 cites W4251402167 @default.
- W2104692761 cites W4300551961 @default.
- W2104692761 cites W4367590708 @default.
- W2104692761 cites W51453698 @default.
- W2104692761 cites W6320672 @default.
- W2104692761 cites W806795312 @default.
- W2104692761 doi "https://doi.org/10.1029/jb095ib12p19495" @default.
- W2104692761 hasPublicationYear "1990" @default.
- W2104692761 type Work @default.
- W2104692761 sameAs 2104692761 @default.
- W2104692761 citedByCount "96" @default.
- W2104692761 countsByYear W21046927612012 @default.
- W2104692761 countsByYear W21046927612013 @default.
- W2104692761 countsByYear W21046927612014 @default.
- W2104692761 countsByYear W21046927612015 @default.
- W2104692761 countsByYear W21046927612016 @default.
- W2104692761 countsByYear W21046927612017 @default.
- W2104692761 countsByYear W21046927612018 @default.
- W2104692761 countsByYear W21046927612019 @default.
- W2104692761 countsByYear W21046927612020 @default.
- W2104692761 countsByYear W21046927612021 @default.
- W2104692761 countsByYear W21046927612022 @default.
- W2104692761 countsByYear W21046927612023 @default.
- W2104692761 crossrefType "journal-article" @default.
- W2104692761 hasAuthorship W2104692761A5031716911 @default.
- W2104692761 hasAuthorship W2104692761A5043215434 @default.
- W2104692761 hasAuthorship W2104692761A5076407233 @default.
- W2104692761 hasAuthorship W2104692761A5081270006 @default.
- W2104692761 hasConcept C109007969 @default.
- W2104692761 hasConcept C114793014 @default.
- W2104692761 hasConcept C120806208 @default.
- W2104692761 hasConcept C121332964 @default.
- W2104692761 hasConcept C127313418 @default.
- W2104692761 hasConcept C153294291 @default.
- W2104692761 hasConcept C155627805 @default.