Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104808211> ?p ?o ?g. }
- W2104808211 endingPage "311" @default.
- W2104808211 startingPage "299" @default.
- W2104808211 abstract "The present work describes a comparison of the ability of multiple linear regression (MLR) and artificial neural networks (ANN) to predict fish spatial occupancy and abundance in a mesotrophic reservoir. Models were run and tested with 306 observations obtained by the sampling point abundance method using electrofishing. For each of the 306 samples, the relationships between physical parameters and the abundance and spatial occupancy of various fish species were studied. For the 15 fish species occurring in the lake, six main fish populations were retained to perform comparisons between ANN and MLR models. Each of the six MLR and ANN models had eight independent environmental variables (i.e. depth, distance from the bank, slope of the bottom, flooded vegetation cover, percentage of boulders, percentage of pebbles, percentage of gravel and percentage of mud) and one dependent variable (fish density for the considered population). To determine the population assemblage, principal component analysis (PCA) was performed on the partial coefficients of the MLR and on the relative contribution of each independent variable of ANN models (determined using Garson's algorithm). The results stress that ANN are more suitable for predicting fish abundance at the population scale than MLR. In the same way, a higher level of ecological complexity, i.e. community scale, was reliably obtained by ANN whereas MLR presented serious shortcomings. These results show that ANN are an appropriate tool for predicting population assemblage in ecology." @default.
- W2104808211 created "2016-06-24" @default.
- W2104808211 creator A5001414294 @default.
- W2104808211 creator A5009032476 @default.
- W2104808211 creator A5015599529 @default.
- W2104808211 creator A5053718280 @default.
- W2104808211 date "1999-08-01" @default.
- W2104808211 modified "2023-10-18" @default.
- W2104808211 title "The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake" @default.
- W2104808211 cites W129831482 @default.
- W2104808211 cites W1497558047 @default.
- W2104808211 cites W1498436455 @default.
- W2104808211 cites W1969404656 @default.
- W2104808211 cites W1973409128 @default.
- W2104808211 cites W2003756933 @default.
- W2104808211 cites W2009288088 @default.
- W2104808211 cites W2013925903 @default.
- W2104808211 cites W2023559070 @default.
- W2104808211 cites W2029237429 @default.
- W2104808211 cites W2056116149 @default.
- W2104808211 cites W2060773627 @default.
- W2104808211 cites W2065232995 @default.
- W2104808211 cites W2076118331 @default.
- W2104808211 cites W2088474893 @default.
- W2104808211 cites W2099436428 @default.
- W2104808211 cites W2101886229 @default.
- W2104808211 cites W2102666490 @default.
- W2104808211 cites W2117295674 @default.
- W2104808211 cites W2130654891 @default.
- W2104808211 cites W2180769203 @default.
- W2104808211 cites W2312993536 @default.
- W2104808211 cites W3032906345 @default.
- W2104808211 cites W4240681323 @default.
- W2104808211 cites W4243562335 @default.
- W2104808211 cites W4251865282 @default.
- W2104808211 cites W4253016408 @default.
- W2104808211 doi "https://doi.org/10.1016/s0304-3800(99)00110-6" @default.
- W2104808211 hasPublicationYear "1999" @default.
- W2104808211 type Work @default.
- W2104808211 sameAs 2104808211 @default.
- W2104808211 citedByCount "123" @default.
- W2104808211 countsByYear W21048082112012 @default.
- W2104808211 countsByYear W21048082112013 @default.
- W2104808211 countsByYear W21048082112014 @default.
- W2104808211 countsByYear W21048082112015 @default.
- W2104808211 countsByYear W21048082112016 @default.
- W2104808211 countsByYear W21048082112017 @default.
- W2104808211 countsByYear W21048082112018 @default.
- W2104808211 countsByYear W21048082112019 @default.
- W2104808211 countsByYear W21048082112020 @default.
- W2104808211 countsByYear W21048082112021 @default.
- W2104808211 countsByYear W21048082112022 @default.
- W2104808211 countsByYear W21048082112023 @default.
- W2104808211 crossrefType "journal-article" @default.
- W2104808211 hasAuthorship W2104808211A5001414294 @default.
- W2104808211 hasAuthorship W2104808211A5009032476 @default.
- W2104808211 hasAuthorship W2104808211A5015599529 @default.
- W2104808211 hasAuthorship W2104808211A5053718280 @default.
- W2104808211 hasConcept C105795698 @default.
- W2104808211 hasConcept C144024400 @default.
- W2104808211 hasConcept C149923435 @default.
- W2104808211 hasConcept C160331591 @default.
- W2104808211 hasConcept C186632785 @default.
- W2104808211 hasConcept C18903297 @default.
- W2104808211 hasConcept C2780513199 @default.
- W2104808211 hasConcept C2908647359 @default.
- W2104808211 hasConcept C33923547 @default.
- W2104808211 hasConcept C39432304 @default.
- W2104808211 hasConcept C48921125 @default.
- W2104808211 hasConcept C77077793 @default.
- W2104808211 hasConcept C86803240 @default.
- W2104808211 hasConceptScore W2104808211C105795698 @default.
- W2104808211 hasConceptScore W2104808211C144024400 @default.
- W2104808211 hasConceptScore W2104808211C149923435 @default.
- W2104808211 hasConceptScore W2104808211C160331591 @default.
- W2104808211 hasConceptScore W2104808211C186632785 @default.
- W2104808211 hasConceptScore W2104808211C18903297 @default.
- W2104808211 hasConceptScore W2104808211C2780513199 @default.
- W2104808211 hasConceptScore W2104808211C2908647359 @default.
- W2104808211 hasConceptScore W2104808211C33923547 @default.
- W2104808211 hasConceptScore W2104808211C39432304 @default.
- W2104808211 hasConceptScore W2104808211C48921125 @default.
- W2104808211 hasConceptScore W2104808211C77077793 @default.
- W2104808211 hasConceptScore W2104808211C86803240 @default.
- W2104808211 hasIssue "2-3" @default.
- W2104808211 hasLocation W21048082111 @default.
- W2104808211 hasOpenAccess W2104808211 @default.
- W2104808211 hasPrimaryLocation W21048082111 @default.
- W2104808211 hasRelatedWork W2010099164 @default.
- W2104808211 hasRelatedWork W2016822132 @default.
- W2104808211 hasRelatedWork W2034744946 @default.
- W2104808211 hasRelatedWork W2064194902 @default.
- W2104808211 hasRelatedWork W2169706673 @default.
- W2104808211 hasRelatedWork W2754034105 @default.
- W2104808211 hasRelatedWork W2803031582 @default.
- W2104808211 hasRelatedWork W2969139815 @default.
- W2104808211 hasRelatedWork W3140318204 @default.
- W2104808211 hasRelatedWork W4376115616 @default.