Matches in SemOpenAlex for { <https://semopenalex.org/work/W2104914621> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2104914621 endingPage "255" @default.
- W2104914621 startingPage "248" @default.
- W2104914621 abstract "Quantitative measurements from segmentations of soft tissues from magnetic resonance images (MRI) of human brains provide important biomarkers for normal aging, as well as disease progression. In this paper, we propose a patch-based tissue classification method from MR images using sparse dictionary learning from an atlas. Unlike most atlas-based classification methods, deformable registration from the atlas to the subject is not required. An “atlas” consists of an MR image, its tissue probabilities, and the hard segmentation. The “subject” consists of the MR image and the corresponding affine registered atlas probabilities (or priors). A subject specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches. The same sparse combination is applied to the segmentation patches of the atlas to generate tissue memberships of the subject. The novel combination of prior probabilities in the example patches enables us to distinguish tissues having similar intensities but having different spatial location. We show that our method outperforms two state-of-the-art whole brain tissue segmentation methods. We experimented on 12 subjects having manual tissue delineations, obtaining mean Dice coefficients of 0.91 and 0.87 for cortical gray matter and cerebral white matter, respectively. In addition, experiments on subjects with ventriculomegaly shows significantly better segmentation using our approach than the competing methods." @default.
- W2104914621 created "2016-06-24" @default.
- W2104914621 creator A5005891853 @default.
- W2104914621 creator A5012909412 @default.
- W2104914621 creator A5066682675 @default.
- W2104914621 creator A5075622613 @default.
- W2104914621 date "2014-01-01" @default.
- W2104914621 modified "2023-10-16" @default.
- W2104914621 title "Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation" @default.
- W2104914621 cites W1982145113 @default.
- W2104914621 cites W1983060851 @default.
- W2104914621 cites W2014105136 @default.
- W2104914621 cites W2038533573 @default.
- W2104914621 cites W2047440597 @default.
- W2104914621 cites W2102099319 @default.
- W2104914621 cites W2130686832 @default.
- W2104914621 cites W2138575170 @default.
- W2104914621 cites W2143758334 @default.
- W2104914621 cites W2151721316 @default.
- W2104914621 cites W2153441116 @default.
- W2104914621 cites W2157848968 @default.
- W2104914621 cites W2160547390 @default.
- W2104914621 cites W4230920194 @default.
- W2104914621 doi "https://doi.org/10.1007/978-3-319-10581-9_31" @default.
- W2104914621 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4220547" @default.
- W2104914621 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25383394" @default.
- W2104914621 hasPublicationYear "2014" @default.
- W2104914621 type Work @default.
- W2104914621 sameAs 2104914621 @default.
- W2104914621 citedByCount "18" @default.
- W2104914621 countsByYear W21049146212015 @default.
- W2104914621 countsByYear W21049146212016 @default.
- W2104914621 countsByYear W21049146212017 @default.
- W2104914621 countsByYear W21049146212018 @default.
- W2104914621 countsByYear W21049146212019 @default.
- W2104914621 countsByYear W21049146212020 @default.
- W2104914621 countsByYear W21049146212021 @default.
- W2104914621 crossrefType "book-chapter" @default.
- W2104914621 hasAuthorship W2104914621A5005891853 @default.
- W2104914621 hasAuthorship W2104914621A5012909412 @default.
- W2104914621 hasAuthorship W2104914621A5066682675 @default.
- W2104914621 hasAuthorship W2104914621A5075622613 @default.
- W2104914621 hasBestOaLocation W21049146212 @default.
- W2104914621 hasConcept C105702510 @default.
- W2104914621 hasConcept C107673813 @default.
- W2104914621 hasConcept C124504099 @default.
- W2104914621 hasConcept C153180895 @default.
- W2104914621 hasConcept C154945302 @default.
- W2104914621 hasConcept C177769412 @default.
- W2104914621 hasConcept C202444582 @default.
- W2104914621 hasConcept C2776673561 @default.
- W2104914621 hasConcept C2780972224 @default.
- W2104914621 hasConcept C31972630 @default.
- W2104914621 hasConcept C33923547 @default.
- W2104914621 hasConcept C41008148 @default.
- W2104914621 hasConcept C71924100 @default.
- W2104914621 hasConcept C89600930 @default.
- W2104914621 hasConcept C92757383 @default.
- W2104914621 hasConceptScore W2104914621C105702510 @default.
- W2104914621 hasConceptScore W2104914621C107673813 @default.
- W2104914621 hasConceptScore W2104914621C124504099 @default.
- W2104914621 hasConceptScore W2104914621C153180895 @default.
- W2104914621 hasConceptScore W2104914621C154945302 @default.
- W2104914621 hasConceptScore W2104914621C177769412 @default.
- W2104914621 hasConceptScore W2104914621C202444582 @default.
- W2104914621 hasConceptScore W2104914621C2776673561 @default.
- W2104914621 hasConceptScore W2104914621C2780972224 @default.
- W2104914621 hasConceptScore W2104914621C31972630 @default.
- W2104914621 hasConceptScore W2104914621C33923547 @default.
- W2104914621 hasConceptScore W2104914621C41008148 @default.
- W2104914621 hasConceptScore W2104914621C71924100 @default.
- W2104914621 hasConceptScore W2104914621C89600930 @default.
- W2104914621 hasConceptScore W2104914621C92757383 @default.
- W2104914621 hasLocation W21049146211 @default.
- W2104914621 hasLocation W21049146212 @default.
- W2104914621 hasLocation W21049146213 @default.
- W2104914621 hasLocation W21049146214 @default.
- W2104914621 hasOpenAccess W2104914621 @default.
- W2104914621 hasPrimaryLocation W21049146211 @default.
- W2104914621 hasRelatedWork W1507266234 @default.
- W2104914621 hasRelatedWork W1631910785 @default.
- W2104914621 hasRelatedWork W1669643531 @default.
- W2104914621 hasRelatedWork W2110230079 @default.
- W2104914621 hasRelatedWork W2117664411 @default.
- W2104914621 hasRelatedWork W2117933325 @default.
- W2104914621 hasRelatedWork W2118414105 @default.
- W2104914621 hasRelatedWork W2122581818 @default.
- W2104914621 hasRelatedWork W2159066190 @default.
- W2104914621 hasRelatedWork W2739874619 @default.
- W2104914621 isParatext "false" @default.
- W2104914621 isRetracted "false" @default.
- W2104914621 magId "2104914621" @default.
- W2104914621 workType "book-chapter" @default.