Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105017694> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2105017694 endingPage "76" @default.
- W2105017694 startingPage "59" @default.
- W2105017694 abstract "Debutanizer column is an important unit operation in petroleum refining industries. The design of online composition prediction by using neural network will help improve product quality monitoring in an oil refinery industry by predicting the top and bottom composition of n-butane simultaneously and accurately for the column. The single dynamic neural network model can be used and designed to overcome the delay introduced by lab sampling and can be also suitable for monitoring purposes. The objective of this work is to investigate and implement an artificial neural network (ANN) for composition prediction of the top and bottom product of a distillation column simultaneously. The major contribution of the current work is to develop these composition predictions of n-butane by using equation based neural network (NN) models. The composition predictions using this method is compared with partial least square (PLS) and regression analysis (RA) methods to show its superiority over these other conventional methods. Based on statistical analysis, the results indicate that neural network equation, which is more robust in nature, predicts better than the PLS equation and RA equation based methods." @default.
- W2105017694 created "2016-06-24" @default.
- W2105017694 creator A5038393380 @default.
- W2105017694 creator A5052257498 @default.
- W2105017694 creator A5062506882 @default.
- W2105017694 creator A5088868795 @default.
- W2105017694 date "2014-05-01" @default.
- W2105017694 modified "2023-09-25" @default.
- W2105017694 title "Composition Prediction of a Debutanizer Column using Equation Based Artificial Neural Network Model" @default.
- W2105017694 cites W1578156763 @default.
- W2105017694 cites W1958850181 @default.
- W2105017694 cites W1971274325 @default.
- W2105017694 cites W1978851512 @default.
- W2105017694 cites W1980107721 @default.
- W2105017694 cites W1983597155 @default.
- W2105017694 cites W2006817856 @default.
- W2105017694 cites W2024539003 @default.
- W2105017694 cites W2031281723 @default.
- W2105017694 cites W2035142596 @default.
- W2105017694 cites W2047841901 @default.
- W2105017694 cites W2048092905 @default.
- W2105017694 cites W2050677527 @default.
- W2105017694 cites W2056100287 @default.
- W2105017694 cites W2063100141 @default.
- W2105017694 cites W2065584454 @default.
- W2105017694 cites W2072070605 @default.
- W2105017694 cites W2076423279 @default.
- W2105017694 cites W2076464471 @default.
- W2105017694 cites W2077463505 @default.
- W2105017694 cites W2079213751 @default.
- W2105017694 cites W2105248467 @default.
- W2105017694 cites W2132267451 @default.
- W2105017694 cites W2139352718 @default.
- W2105017694 cites W2620302040 @default.
- W2105017694 cites W4255906314 @default.
- W2105017694 doi "https://doi.org/10.1016/j.neucom.2013.10.039" @default.
- W2105017694 hasPublicationYear "2014" @default.
- W2105017694 type Work @default.
- W2105017694 sameAs 2105017694 @default.
- W2105017694 citedByCount "34" @default.
- W2105017694 countsByYear W21050176942014 @default.
- W2105017694 countsByYear W21050176942015 @default.
- W2105017694 countsByYear W21050176942016 @default.
- W2105017694 countsByYear W21050176942017 @default.
- W2105017694 countsByYear W21050176942018 @default.
- W2105017694 countsByYear W21050176942019 @default.
- W2105017694 countsByYear W21050176942020 @default.
- W2105017694 countsByYear W21050176942021 @default.
- W2105017694 countsByYear W21050176942022 @default.
- W2105017694 crossrefType "journal-article" @default.
- W2105017694 hasAuthorship W2105017694A5038393380 @default.
- W2105017694 hasAuthorship W2105017694A5052257498 @default.
- W2105017694 hasAuthorship W2105017694A5062506882 @default.
- W2105017694 hasAuthorship W2105017694A5088868795 @default.
- W2105017694 hasConcept C126042441 @default.
- W2105017694 hasConcept C154945302 @default.
- W2105017694 hasConcept C186060115 @default.
- W2105017694 hasConcept C2780551164 @default.
- W2105017694 hasConcept C41008148 @default.
- W2105017694 hasConcept C50644808 @default.
- W2105017694 hasConcept C76155785 @default.
- W2105017694 hasConcept C86803240 @default.
- W2105017694 hasConceptScore W2105017694C126042441 @default.
- W2105017694 hasConceptScore W2105017694C154945302 @default.
- W2105017694 hasConceptScore W2105017694C186060115 @default.
- W2105017694 hasConceptScore W2105017694C2780551164 @default.
- W2105017694 hasConceptScore W2105017694C41008148 @default.
- W2105017694 hasConceptScore W2105017694C50644808 @default.
- W2105017694 hasConceptScore W2105017694C76155785 @default.
- W2105017694 hasConceptScore W2105017694C86803240 @default.
- W2105017694 hasLocation W21050176941 @default.
- W2105017694 hasOpenAccess W2105017694 @default.
- W2105017694 hasPrimaryLocation W21050176941 @default.
- W2105017694 hasRelatedWork W1996012499 @default.
- W2105017694 hasRelatedWork W2038488747 @default.
- W2105017694 hasRelatedWork W2159443810 @default.
- W2105017694 hasRelatedWork W2386387936 @default.
- W2105017694 hasRelatedWork W2898942020 @default.
- W2105017694 hasRelatedWork W3001020386 @default.
- W2105017694 hasRelatedWork W3107474891 @default.
- W2105017694 hasRelatedWork W644753246 @default.
- W2105017694 hasRelatedWork W1629725936 @default.
- W2105017694 hasRelatedWork W2130322709 @default.
- W2105017694 hasVolume "131" @default.
- W2105017694 isParatext "false" @default.
- W2105017694 isRetracted "false" @default.
- W2105017694 magId "2105017694" @default.
- W2105017694 workType "article" @default.